基于决策树机器学习的图像自动标注

Lixing Jiang, Jin Hou, Zeng Chen, Dengsheng Zhang
{"title":"基于决策树机器学习的图像自动标注","authors":"Lixing Jiang, Jin Hou, Zeng Chen, Dengsheng Zhang","doi":"10.1109/CYBERC.2009.5342168","DOIUrl":null,"url":null,"abstract":"With the rapid development of digital imaging technology, image annotation is an important and challenging task in image retrieval. At present, many machine learning methods have been applied to solve the problem of automatic image annotation (AIA). However, there exists enormous semantic expressive gap between the low-level image features and high-level semantic concepts. Due to the problem, the annotation performance of existing methods is not satisfactory, and needs to be further improved. This paper proposes an automatic annotation framework via a novel decision tree-based Bayesian (DTB) machine learning algorithm. It is a hybrid approach that attempts to utilize the advantages of both DT and Naive-Bayesian (NB). We firstly segment an image into different regions and extract low-level features of each region. From these features, high-level semantic concepts are obtained using a DTB learning algorithm. Finally, experiments conducted on the Corel dataset demonstrate the effectiveness of DTB machine learning. The DTB can not only enhance the classification accuracy, but also associate low-level region features with high-level image concepts. This method presents the advantages of the Bayesian method and the DT. Moreover, this semantic interpretation capability is a natural simulation of human learning.","PeriodicalId":222874,"journal":{"name":"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic image annotation based on decision tree machine learning\",\"authors\":\"Lixing Jiang, Jin Hou, Zeng Chen, Dengsheng Zhang\",\"doi\":\"10.1109/CYBERC.2009.5342168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of digital imaging technology, image annotation is an important and challenging task in image retrieval. At present, many machine learning methods have been applied to solve the problem of automatic image annotation (AIA). However, there exists enormous semantic expressive gap between the low-level image features and high-level semantic concepts. Due to the problem, the annotation performance of existing methods is not satisfactory, and needs to be further improved. This paper proposes an automatic annotation framework via a novel decision tree-based Bayesian (DTB) machine learning algorithm. It is a hybrid approach that attempts to utilize the advantages of both DT and Naive-Bayesian (NB). We firstly segment an image into different regions and extract low-level features of each region. From these features, high-level semantic concepts are obtained using a DTB learning algorithm. Finally, experiments conducted on the Corel dataset demonstrate the effectiveness of DTB machine learning. The DTB can not only enhance the classification accuracy, but also associate low-level region features with high-level image concepts. This method presents the advantages of the Bayesian method and the DT. Moreover, this semantic interpretation capability is a natural simulation of human learning.\",\"PeriodicalId\":222874,\"journal\":{\"name\":\"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2009.5342168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2009.5342168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随着数字成像技术的飞速发展,图像标注是图像检索中的一项重要而富有挑战性的任务。目前,许多机器学习方法已经被应用于解决自动图像标注(AIA)问题。然而,低级图像特征与高级语义概念之间存在着巨大的语义表达差距。由于这个问题,现有方法的标注性能并不令人满意,需要进一步改进。本文提出了一种基于决策树的贝叶斯机器学习算法的自动标注框架。它是一种混合方法,试图利用DT和Naive-Bayesian (NB)的优点。首先将图像分割成不同的区域,提取每个区域的底层特征。从这些特征中,使用DTB学习算法获得高级语义概念。最后,在Corel数据集上进行的实验证明了DTB机器学习的有效性。DTB不仅可以提高分类精度,还可以将低级区域特征与高级图像概念联系起来。该方法结合了贝叶斯法和DT法的优点。此外,这种语义解释能力是对人类学习的自然模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic image annotation based on decision tree machine learning
With the rapid development of digital imaging technology, image annotation is an important and challenging task in image retrieval. At present, many machine learning methods have been applied to solve the problem of automatic image annotation (AIA). However, there exists enormous semantic expressive gap between the low-level image features and high-level semantic concepts. Due to the problem, the annotation performance of existing methods is not satisfactory, and needs to be further improved. This paper proposes an automatic annotation framework via a novel decision tree-based Bayesian (DTB) machine learning algorithm. It is a hybrid approach that attempts to utilize the advantages of both DT and Naive-Bayesian (NB). We firstly segment an image into different regions and extract low-level features of each region. From these features, high-level semantic concepts are obtained using a DTB learning algorithm. Finally, experiments conducted on the Corel dataset demonstrate the effectiveness of DTB machine learning. The DTB can not only enhance the classification accuracy, but also associate low-level region features with high-level image concepts. This method presents the advantages of the Bayesian method and the DT. Moreover, this semantic interpretation capability is a natural simulation of human learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信