多视点集群

S. Bickel, T. Scheffer
{"title":"多视点集群","authors":"S. Bickel, T. Scheffer","doi":"10.1109/ICDM.2004.10095","DOIUrl":null,"url":null,"abstract":"We consider clustering problems in which the available attributes can be split into two independent subsets, such that either subset suffices for learning. Example applications of this multi-view setting include clustering of Web pages which have an intrinsic view (the pages themselves) and an extrinsic view (e.g., anchor texts of inbound hyperlinks); multi-view learning has so far been studied in the context of classification. We develop and study partitioning and agglomerative, hierarchical multi-view clustering algorithms for text data. We find empirically that the multi-view versions of k-means and EM greatly improve on their single-view counterparts. By contrast, we obtain negative results for agglomerative hierarchical multi-view clustering. Our analysis explains this surprising phenomenon.","PeriodicalId":325511,"journal":{"name":"Fourth IEEE International Conference on Data Mining (ICDM'04)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"763","resultStr":"{\"title\":\"Multi-view clustering\",\"authors\":\"S. Bickel, T. Scheffer\",\"doi\":\"10.1109/ICDM.2004.10095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider clustering problems in which the available attributes can be split into two independent subsets, such that either subset suffices for learning. Example applications of this multi-view setting include clustering of Web pages which have an intrinsic view (the pages themselves) and an extrinsic view (e.g., anchor texts of inbound hyperlinks); multi-view learning has so far been studied in the context of classification. We develop and study partitioning and agglomerative, hierarchical multi-view clustering algorithms for text data. We find empirically that the multi-view versions of k-means and EM greatly improve on their single-view counterparts. By contrast, we obtain negative results for agglomerative hierarchical multi-view clustering. Our analysis explains this surprising phenomenon.\",\"PeriodicalId\":325511,\"journal\":{\"name\":\"Fourth IEEE International Conference on Data Mining (ICDM'04)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"763\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth IEEE International Conference on Data Mining (ICDM'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2004.10095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE International Conference on Data Mining (ICDM'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2004.10095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 763

摘要

我们考虑聚类问题,其中可用属性可以分成两个独立的子集,这样任何一个子集都足以进行学习。这种多视图设置的示例应用包括对具有内在视图(页面本身)和外在视图(例如,入站超链接的锚文本)的Web页面进行聚类;目前多视角学习的研究主要集中在分类的背景下。我们开发和研究了文本数据的分割和聚类、分层多视图聚类算法。我们从经验上发现,k-means和EM的多视图版本比它们的单视图版本有很大的改进。相比之下,对于聚类分层多视图聚类,我们得到了否定的结果。我们的分析解释了这个令人惊讶的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-view clustering
We consider clustering problems in which the available attributes can be split into two independent subsets, such that either subset suffices for learning. Example applications of this multi-view setting include clustering of Web pages which have an intrinsic view (the pages themselves) and an extrinsic view (e.g., anchor texts of inbound hyperlinks); multi-view learning has so far been studied in the context of classification. We develop and study partitioning and agglomerative, hierarchical multi-view clustering algorithms for text data. We find empirically that the multi-view versions of k-means and EM greatly improve on their single-view counterparts. By contrast, we obtain negative results for agglomerative hierarchical multi-view clustering. Our analysis explains this surprising phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信