{"title":"多视点集群","authors":"S. Bickel, T. Scheffer","doi":"10.1109/ICDM.2004.10095","DOIUrl":null,"url":null,"abstract":"We consider clustering problems in which the available attributes can be split into two independent subsets, such that either subset suffices for learning. Example applications of this multi-view setting include clustering of Web pages which have an intrinsic view (the pages themselves) and an extrinsic view (e.g., anchor texts of inbound hyperlinks); multi-view learning has so far been studied in the context of classification. We develop and study partitioning and agglomerative, hierarchical multi-view clustering algorithms for text data. We find empirically that the multi-view versions of k-means and EM greatly improve on their single-view counterparts. By contrast, we obtain negative results for agglomerative hierarchical multi-view clustering. Our analysis explains this surprising phenomenon.","PeriodicalId":325511,"journal":{"name":"Fourth IEEE International Conference on Data Mining (ICDM'04)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"763","resultStr":"{\"title\":\"Multi-view clustering\",\"authors\":\"S. Bickel, T. Scheffer\",\"doi\":\"10.1109/ICDM.2004.10095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider clustering problems in which the available attributes can be split into two independent subsets, such that either subset suffices for learning. Example applications of this multi-view setting include clustering of Web pages which have an intrinsic view (the pages themselves) and an extrinsic view (e.g., anchor texts of inbound hyperlinks); multi-view learning has so far been studied in the context of classification. We develop and study partitioning and agglomerative, hierarchical multi-view clustering algorithms for text data. We find empirically that the multi-view versions of k-means and EM greatly improve on their single-view counterparts. By contrast, we obtain negative results for agglomerative hierarchical multi-view clustering. Our analysis explains this surprising phenomenon.\",\"PeriodicalId\":325511,\"journal\":{\"name\":\"Fourth IEEE International Conference on Data Mining (ICDM'04)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"763\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth IEEE International Conference on Data Mining (ICDM'04)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2004.10095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE International Conference on Data Mining (ICDM'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2004.10095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider clustering problems in which the available attributes can be split into two independent subsets, such that either subset suffices for learning. Example applications of this multi-view setting include clustering of Web pages which have an intrinsic view (the pages themselves) and an extrinsic view (e.g., anchor texts of inbound hyperlinks); multi-view learning has so far been studied in the context of classification. We develop and study partitioning and agglomerative, hierarchical multi-view clustering algorithms for text data. We find empirically that the multi-view versions of k-means and EM greatly improve on their single-view counterparts. By contrast, we obtain negative results for agglomerative hierarchical multi-view clustering. Our analysis explains this surprising phenomenon.