统计语音波形合成的综合评价

Thomas Merritt, Bartosz Putrycz, Adam Nadolski, Tianjun Ye, Daniel Korzekwa, Wiktor Dolecki, Thomas Drugman, V. Klimkov, A. Moinet, A. Breen, Rafal Kuklinski, N. Strom, R. Barra-Chicote
{"title":"统计语音波形合成的综合评价","authors":"Thomas Merritt, Bartosz Putrycz, Adam Nadolski, Tianjun Ye, Daniel Korzekwa, Wiktor Dolecki, Thomas Drugman, V. Klimkov, A. Moinet, A. Breen, Rafal Kuklinski, N. Strom, R. Barra-Chicote","doi":"10.1109/SLT.2018.8639556","DOIUrl":null,"url":null,"abstract":"Statistical TTS systems that directly predict the speech waveform have recently reported improvements in synthesis quality. This investigation evaluates Amazon’s statistical speech waveform synthesis (SSWS) system. An in-depth evaluation of SSWS is conducted across a number of domains to better understand the consistency in quality. The results of this evaluation are validated by repeating the procedure on a separate group of testers. Finally, an analysis of the nature of speech errors of SSWS compared to hybrid unit selection synthesis is conducted to identify the strengths and weaknesses of SSWS. Having a deeper insight into SSWS allows us to better define the focus of future work to improve this new technology.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Comprehensive Evaluation of Statistical Speech Waveform Synthesis\",\"authors\":\"Thomas Merritt, Bartosz Putrycz, Adam Nadolski, Tianjun Ye, Daniel Korzekwa, Wiktor Dolecki, Thomas Drugman, V. Klimkov, A. Moinet, A. Breen, Rafal Kuklinski, N. Strom, R. Barra-Chicote\",\"doi\":\"10.1109/SLT.2018.8639556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Statistical TTS systems that directly predict the speech waveform have recently reported improvements in synthesis quality. This investigation evaluates Amazon’s statistical speech waveform synthesis (SSWS) system. An in-depth evaluation of SSWS is conducted across a number of domains to better understand the consistency in quality. The results of this evaluation are validated by repeating the procedure on a separate group of testers. Finally, an analysis of the nature of speech errors of SSWS compared to hybrid unit selection synthesis is conducted to identify the strengths and weaknesses of SSWS. Having a deeper insight into SSWS allows us to better define the focus of future work to improve this new technology.\",\"PeriodicalId\":377307,\"journal\":{\"name\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2018.8639556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

直接预测语音波形的统计TTS系统最近报道了合成质量的改进。本研究评估了亚马逊的统计语音波形合成(SSWS)系统。在多个领域对SSWS进行了深入评估,以更好地了解质量的一致性。通过在一组单独的测试人员中重复该过程,可以验证评估的结果。最后,对SSWS与混合单元选择合成的语音错误性质进行了分析,以确定SSWS的优缺点。对SSWS有了更深入的了解,我们可以更好地确定未来工作的重点,以改进这项新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Evaluation of Statistical Speech Waveform Synthesis
Statistical TTS systems that directly predict the speech waveform have recently reported improvements in synthesis quality. This investigation evaluates Amazon’s statistical speech waveform synthesis (SSWS) system. An in-depth evaluation of SSWS is conducted across a number of domains to better understand the consistency in quality. The results of this evaluation are validated by repeating the procedure on a separate group of testers. Finally, an analysis of the nature of speech errors of SSWS compared to hybrid unit selection synthesis is conducted to identify the strengths and weaknesses of SSWS. Having a deeper insight into SSWS allows us to better define the focus of future work to improve this new technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信