{"title":"多项式和RBF核作为标记选择工具——一个乳腺癌案例研究","authors":"M. Blazadonakis, M. Zervakis","doi":"10.1109/ICMLA.2007.67","DOIUrl":null,"url":null,"abstract":"The problem of marker selection in DNA microarray experiment, due to the \"curse of dimensionality\", has been mostly addressed so far by linear approaches. Taking into account the fact that the domain of interest is a complex one, where non-linear interconnections and dependencies may also exist among the extremely large number of examined genes, we address the use of nonlinear tools to assess the problem. In this study, we propose to apply the kernel ability of Support Vector Machines in combination with Fisher's ratio as an alternative approach to assess the problem.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Polynomial and RBF Kernels as Marker Selection Tools-A Breast Cancer Case Study\",\"authors\":\"M. Blazadonakis, M. Zervakis\",\"doi\":\"10.1109/ICMLA.2007.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of marker selection in DNA microarray experiment, due to the \\\"curse of dimensionality\\\", has been mostly addressed so far by linear approaches. Taking into account the fact that the domain of interest is a complex one, where non-linear interconnections and dependencies may also exist among the extremely large number of examined genes, we address the use of nonlinear tools to assess the problem. In this study, we propose to apply the kernel ability of Support Vector Machines in combination with Fisher's ratio as an alternative approach to assess the problem.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.67\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polynomial and RBF Kernels as Marker Selection Tools-A Breast Cancer Case Study
The problem of marker selection in DNA microarray experiment, due to the "curse of dimensionality", has been mostly addressed so far by linear approaches. Taking into account the fact that the domain of interest is a complex one, where non-linear interconnections and dependencies may also exist among the extremely large number of examined genes, we address the use of nonlinear tools to assess the problem. In this study, we propose to apply the kernel ability of Support Vector Machines in combination with Fisher's ratio as an alternative approach to assess the problem.