随机参数离散双线性系统稳定性

X. Yang, R. R. Mohler, L. Chen
{"title":"随机参数离散双线性系统稳定性","authors":"X. Yang, R. R. Mohler, L. Chen","doi":"10.1109/CDC.1989.70323","DOIUrl":null,"url":null,"abstract":"Stability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system.<<ETX>>","PeriodicalId":156565,"journal":{"name":"Proceedings of the 28th IEEE Conference on Decision and Control,","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random parameter discrete bilinear system stability\",\"authors\":\"X. Yang, R. R. Mohler, L. Chen\",\"doi\":\"10.1109/CDC.1989.70323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system.<<ETX>>\",\"PeriodicalId\":156565,\"journal\":{\"name\":\"Proceedings of the 28th IEEE Conference on Decision and Control,\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th IEEE Conference on Decision and Control,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.1989.70323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th IEEE Conference on Decision and Control,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1989.70323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究离散、时变、随机双线性系统的稳定性。包括具有输出反馈的双线性系统。在不假设随机噪声平稳的情况下,导出了随机模型的均方稳定性条件。反馈函数比线性函数或满足Lipschitz条件的函数包含更大的函数类。充分稳定条件仅依赖于双线性系统的系数矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random parameter discrete bilinear system stability
Stability of discrete, time-varying, stochastic, bilinear systems is studied. Bilinear systems with output feedback are included. Mean-square stability conditions are derived for stochastic models without the assumption of stationarity for the random noise. The feedback function includes a larger class of functions than the class of linear functions or functions satisfying the Lipschitz condition. The sufficient stabilizing conditions depend only on the coefficient matrices of the bilinear system.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信