圆柱几何的微波全息图重建

V. Razevig, A. Ivashov, A. Bugaev
{"title":"圆柱几何的微波全息图重建","authors":"V. Razevig, A. Ivashov, A. Bugaev","doi":"10.18127/j20700784-202106-01","DOIUrl":null,"url":null,"abstract":"Microwave imaging is a technique for evaluation of hidden or embedded objects in an optically opaque structure (or media) using electromagnetic waves in microwave regime. The result of the study is a microwave image of the internal structure of the investigated object, which is built by reconstructing the electromagnetic field scattered by the object (microwave hologram), recorded using some radar system at some aperture. Along with the widespread flat aperture, a cylindrical aperture is often used in personnel screening systems, microwave system for automated body measurement for apparel fitting, and medical tomographic scanners. Cylindrical geometry requires special holograms reconstruction methods. The work is dedicated to comparison of three hologram reconstruction methods: №1 – back projection, №2 – back propagation and №3 – Gauss–Newton, and identifying the advantages and disadvantages of each method. All methods were adopted to cylindrical geometry, software implemented using Python programming language and compared. Comparison was performed by reconstruction of microwave holograms of the same objects. Microwave holograms for comparison were calculated in accordance with the principles of physical optics for point scatterers and using the computational electromagnetics software product FEKO for solid objects. Comparison criteria were: speed of calculations, quality of obtained microwave images, required random access memory (RAM) of the computer. Based on the results of numerical experiments, the following conclusions can be made. For both point and solid objects, all methods have showed a similar quality of the obtained microwave images, the difference turned out to be minimal both in visual and numerical estimation. The advantage of method №1 is the simplicity of its software implementation. In addition, using the first method, you can easily do reconstruction for any area (line, surface, volume), the position of which can be arbitrary in relation to the positions of the samples of the radar signal. Method №2 is the fastest method. With the parameters considered in the article, it is two orders of magnitude faster than method №1, and its performance can be easily increased by parallelizing calculations for different radii. Among the shortcomings, one can note the complexity of its software implementation and the dependence of the position and size of the reconstructed area on the location and number of samples of the radar signal. A significant drawback of method №3 is its high requirements to the RAM of the computer, as well as low speed of calculations. When processing microwave holograms with a large number of samples, calculations may require more memory than is installed in the computer, and the calculation time will increase many times due to the continuous exchange of data with the hard disk, or it will be impossible to do the calculations at all.","PeriodicalId":151965,"journal":{"name":"Achievements of Modern Radioelectronics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave hologram reconstruction for cylindrical geometry\",\"authors\":\"V. Razevig, A. Ivashov, A. Bugaev\",\"doi\":\"10.18127/j20700784-202106-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave imaging is a technique for evaluation of hidden or embedded objects in an optically opaque structure (or media) using electromagnetic waves in microwave regime. The result of the study is a microwave image of the internal structure of the investigated object, which is built by reconstructing the electromagnetic field scattered by the object (microwave hologram), recorded using some radar system at some aperture. Along with the widespread flat aperture, a cylindrical aperture is often used in personnel screening systems, microwave system for automated body measurement for apparel fitting, and medical tomographic scanners. Cylindrical geometry requires special holograms reconstruction methods. The work is dedicated to comparison of three hologram reconstruction methods: №1 – back projection, №2 – back propagation and №3 – Gauss–Newton, and identifying the advantages and disadvantages of each method. All methods were adopted to cylindrical geometry, software implemented using Python programming language and compared. Comparison was performed by reconstruction of microwave holograms of the same objects. Microwave holograms for comparison were calculated in accordance with the principles of physical optics for point scatterers and using the computational electromagnetics software product FEKO for solid objects. Comparison criteria were: speed of calculations, quality of obtained microwave images, required random access memory (RAM) of the computer. Based on the results of numerical experiments, the following conclusions can be made. For both point and solid objects, all methods have showed a similar quality of the obtained microwave images, the difference turned out to be minimal both in visual and numerical estimation. The advantage of method №1 is the simplicity of its software implementation. In addition, using the first method, you can easily do reconstruction for any area (line, surface, volume), the position of which can be arbitrary in relation to the positions of the samples of the radar signal. Method №2 is the fastest method. With the parameters considered in the article, it is two orders of magnitude faster than method №1, and its performance can be easily increased by parallelizing calculations for different radii. Among the shortcomings, one can note the complexity of its software implementation and the dependence of the position and size of the reconstructed area on the location and number of samples of the radar signal. A significant drawback of method №3 is its high requirements to the RAM of the computer, as well as low speed of calculations. When processing microwave holograms with a large number of samples, calculations may require more memory than is installed in the computer, and the calculation time will increase many times due to the continuous exchange of data with the hard disk, or it will be impossible to do the calculations at all.\",\"PeriodicalId\":151965,\"journal\":{\"name\":\"Achievements of Modern Radioelectronics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Achievements of Modern Radioelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18127/j20700784-202106-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Achievements of Modern Radioelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18127/j20700784-202106-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

微波成像是一种利用微波波段的电磁波对光学不透明结构(或介质)中隐藏或嵌入的物体进行评估的技术。研究的结果是被研究物体内部结构的微波图像,该图像是由物体散射的电磁场重建而成的(微波全息图),利用某一雷达系统在某一孔径处记录下来。随着平面孔径的广泛应用,圆柱孔径也经常被用于人员筛选系统、用于服装试穿的自动身体测量的微波系统和医学断层扫描仪。圆柱几何需要特殊的全息图重建方法。该工作致力于比较三种全息图重建方法:№1 -反向投影,№2 -反向传播和№3 -高斯-牛顿,并确定每种方法的优缺点。所有方法均采用圆柱几何,软件采用Python编程语言实现并进行比较。通过重建相同物体的微波全息图进行比较。根据点散射体的物理光学原理,利用固体物体的计算电磁学软件FEKO计算了用于对比的微波全息图。比较标准是:计算速度,获得的微波图像质量,所需的计算机随机存取存储器(RAM)。根据数值实验结果,可以得出以下结论:对于点和固体目标,所有方法得到的微波图像质量相似,视觉和数值估计的差异很小。方法1的优点是其软件实现的简单性。此外,使用第一种方法,您可以轻松地对任何区域(线,面,体)进行重建,其位置可以是相对于雷达信号样本位置的任意位置。方法2是最快的方法。使用本文中考虑的参数,它比方法№1快两个数量级,并且可以通过对不同半径的并行计算轻松提高其性能。在缺点中,可以注意到其软件实现的复杂性以及重建区域的位置和大小依赖于雷达信号的位置和样本数量。方法№3的一个显著缺点是它的高要求的RAM的计算机,以及低速度的计算。在处理具有大量样本的微波全息图时,计算可能需要比计算机安装的内存更多的内存,并且由于与硬盘不断交换数据,计算时间将增加许多倍,或者根本无法进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microwave hologram reconstruction for cylindrical geometry
Microwave imaging is a technique for evaluation of hidden or embedded objects in an optically opaque structure (or media) using electromagnetic waves in microwave regime. The result of the study is a microwave image of the internal structure of the investigated object, which is built by reconstructing the electromagnetic field scattered by the object (microwave hologram), recorded using some radar system at some aperture. Along with the widespread flat aperture, a cylindrical aperture is often used in personnel screening systems, microwave system for automated body measurement for apparel fitting, and medical tomographic scanners. Cylindrical geometry requires special holograms reconstruction methods. The work is dedicated to comparison of three hologram reconstruction methods: №1 – back projection, №2 – back propagation and №3 – Gauss–Newton, and identifying the advantages and disadvantages of each method. All methods were adopted to cylindrical geometry, software implemented using Python programming language and compared. Comparison was performed by reconstruction of microwave holograms of the same objects. Microwave holograms for comparison were calculated in accordance with the principles of physical optics for point scatterers and using the computational electromagnetics software product FEKO for solid objects. Comparison criteria were: speed of calculations, quality of obtained microwave images, required random access memory (RAM) of the computer. Based on the results of numerical experiments, the following conclusions can be made. For both point and solid objects, all methods have showed a similar quality of the obtained microwave images, the difference turned out to be minimal both in visual and numerical estimation. The advantage of method №1 is the simplicity of its software implementation. In addition, using the first method, you can easily do reconstruction for any area (line, surface, volume), the position of which can be arbitrary in relation to the positions of the samples of the radar signal. Method №2 is the fastest method. With the parameters considered in the article, it is two orders of magnitude faster than method №1, and its performance can be easily increased by parallelizing calculations for different radii. Among the shortcomings, one can note the complexity of its software implementation and the dependence of the position and size of the reconstructed area on the location and number of samples of the radar signal. A significant drawback of method №3 is its high requirements to the RAM of the computer, as well as low speed of calculations. When processing microwave holograms with a large number of samples, calculations may require more memory than is installed in the computer, and the calculation time will increase many times due to the continuous exchange of data with the hard disk, or it will be impossible to do the calculations at all.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信