使用法学硕士对课程讨论板问题进行分类

Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang
{"title":"使用法学硕士对课程讨论板问题进行分类","authors":"Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang","doi":"10.1145/3587103.3594202","DOIUrl":null,"url":null,"abstract":"Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.","PeriodicalId":366365,"journal":{"name":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classifying Course Discussion Board Questions using LLMs\",\"authors\":\"Paul Zhang, Brandon Jaipersaud, Jimmy Ba, Andrew Petersen, Lisa Zhang, Michael Ruogu Zhang\",\"doi\":\"10.1145/3587103.3594202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.\",\"PeriodicalId\":366365,\"journal\":{\"name\":\"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3587103.3594202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V. 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3587103.3594202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)可以用来回答课程讨论板上的学生问题,但是llm回答他们无法解决的问题是有风险的。我们提出并评估了一个基于法学硕士的系统,该系统将学生的问题分为四种类型:概念性、作业性、逻辑性和不可回答性。然后,我们使用特定于类型的提示符提示LLM。使用GPT-3,我们在四个类别中实现了81%的分类准确率。此外,我们对不可回答问题的分类准确率达到93%。这表明我们的制度有效地忽略了它无法解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Course Discussion Board Questions using LLMs
Large language models (LLMs) can be used to answer student questions on course discussion boards, but there is a risk of LLMs answering questions they are unable to address. We propose and evaluate an LLM-based system that classifies student questions into one of four types: conceptual, homework, logistics, and not answerable. We then prompt an LLM using a type-specific prompt. Using GPT-3, we achieve 81% classification accuracy across the four categories. Furthermore, we achieve 93% accuracy on classifying not answerable questions. This indicates that our system effectively ignores questions that it cannot address.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信