信贷组合中风险贡献的无模型计算

Álvaro Leitao, L. Ortiz-Gracia
{"title":"信贷组合中风险贡献的无模型计算","authors":"Álvaro Leitao, L. Ortiz-Gracia","doi":"10.2139/ssrn.3273894","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we propose a non-parametric density estimation technique for measuring the risk in a credit portfolio, aiming at efficiently computing the marginal risk contributions. The novel method is based on wavelets, and we derive closed-form expressions to calculate the Value-at-Risk (VaR), the Expected Shortfall (ES) as well as the individual risk contributions to VaR (VaRC) and ES (ESC). We consider the multi-factor Gaussian and t-copula models for driving the defaults. The results obtained along the numerical experiments show the impressive accuracy and speed of this method when compared with crude Monte Carlo simulation. The presented methodology applies in the same manner regardless of the used model, and the computational performance is invariant under a considerable change in the dimension of the selected model. The speed-up with respect to the classical Monte Carlo approach ranges from twenty-five to one-thousand depending on the used model.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Model-Free Computation of Risk Contributions in Credit Portfolios\",\"authors\":\"Álvaro Leitao, L. Ortiz-Gracia\",\"doi\":\"10.2139/ssrn.3273894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, we propose a non-parametric density estimation technique for measuring the risk in a credit portfolio, aiming at efficiently computing the marginal risk contributions. The novel method is based on wavelets, and we derive closed-form expressions to calculate the Value-at-Risk (VaR), the Expected Shortfall (ES) as well as the individual risk contributions to VaR (VaRC) and ES (ESC). We consider the multi-factor Gaussian and t-copula models for driving the defaults. The results obtained along the numerical experiments show the impressive accuracy and speed of this method when compared with crude Monte Carlo simulation. The presented methodology applies in the same manner regardless of the used model, and the computational performance is invariant under a considerable change in the dimension of the selected model. The speed-up with respect to the classical Monte Carlo approach ranges from twenty-five to one-thousand depending on the used model.\",\"PeriodicalId\":203996,\"journal\":{\"name\":\"ERN: Value-at-Risk (Topic)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Value-at-Risk (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3273894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3273894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文提出了一种非参数密度估计技术,用于信贷组合的风险度量,旨在有效地计算边际风险贡献。该方法基于小波,推导出风险值(VaR)、预期差额(ES)以及个体风险对VaR (VaRC)和ES (ESC)的贡献的封闭表达式。我们考虑多因素高斯和t-copula模型来驱动默认值。数值实验结果表明,与原始蒙特卡罗模拟相比,该方法具有较高的精度和速度。无论使用哪种模型,所提出的方法都以相同的方式适用,并且在所选模型的维度发生相当大的变化时,计算性能是不变的。相对于经典蒙特卡罗方法的加速范围从25到1000,取决于所使用的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-Free Computation of Risk Contributions in Credit Portfolios
Abstract In this work, we propose a non-parametric density estimation technique for measuring the risk in a credit portfolio, aiming at efficiently computing the marginal risk contributions. The novel method is based on wavelets, and we derive closed-form expressions to calculate the Value-at-Risk (VaR), the Expected Shortfall (ES) as well as the individual risk contributions to VaR (VaRC) and ES (ESC). We consider the multi-factor Gaussian and t-copula models for driving the defaults. The results obtained along the numerical experiments show the impressive accuracy and speed of this method when compared with crude Monte Carlo simulation. The presented methodology applies in the same manner regardless of the used model, and the computational performance is invariant under a considerable change in the dimension of the selected model. The speed-up with respect to the classical Monte Carlo approach ranges from twenty-five to one-thousand depending on the used model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信