结合进化算法和基于案例推理的人工智能鸟类高质量射击策略学习

Suleyman Gemici, T. Gabel, Benjamin Loffler, A. Tharwat
{"title":"结合进化算法和基于案例推理的人工智能鸟类高质量射击策略学习","authors":"Suleyman Gemici, T. Gabel, Benjamin Loffler, A. Tharwat","doi":"10.1109/EAIS.2017.7954840","DOIUrl":null,"url":null,"abstract":"Self-adaptation and the ability to assimilate new knowledge are two fundamental characteristics of intelligent systems. In this paper we leverage methods from evolutionary optimization and from case-based reasoning to construct an agent that is able to evolve in such a way that it is able to successfully master the popular video game Angry Birds.","PeriodicalId":286312,"journal":{"name":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining evolutionary algorithms and case-based reasoning for learning high-quality shooting strategies in AI birds\",\"authors\":\"Suleyman Gemici, T. Gabel, Benjamin Loffler, A. Tharwat\",\"doi\":\"10.1109/EAIS.2017.7954840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-adaptation and the ability to assimilate new knowledge are two fundamental characteristics of intelligent systems. In this paper we leverage methods from evolutionary optimization and from case-based reasoning to construct an agent that is able to evolve in such a way that it is able to successfully master the popular video game Angry Birds.\",\"PeriodicalId\":286312,\"journal\":{\"name\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Evolving and Adaptive Intelligent Systems (EAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EAIS.2017.7954840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Evolving and Adaptive Intelligent Systems (EAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAIS.2017.7954840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自适应和吸收新知识的能力是智能系统的两个基本特征。在本文中,我们利用进化优化和基于案例推理的方法来构建一个能够以这种方式进化的代理,它能够成功地掌握流行的电子游戏“愤怒的小鸟”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining evolutionary algorithms and case-based reasoning for learning high-quality shooting strategies in AI birds
Self-adaptation and the ability to assimilate new knowledge are two fundamental characteristics of intelligent systems. In this paper we leverage methods from evolutionary optimization and from case-based reasoning to construct an agent that is able to evolve in such a way that it is able to successfully master the popular video game Angry Birds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信