具有并联负载谐振转换器的高效电池充电器

Y. Chuang, Y. Ke, Shun-Yi Chang
{"title":"具有并联负载谐振转换器的高效电池充电器","authors":"Y. Chuang, Y. Ke, Shun-Yi Chang","doi":"10.1109/IAS.2009.5324836","DOIUrl":null,"url":null,"abstract":"The well established advantages of resonant converters for battery chargers, including fast response, low switching losses, easy of the control scheme, simplicity of circuit configuration, and low electromagnetic interference (EMI), among others, have led to their increasing attraction. This work develops a highly efficient battery charger with a parallel-loaded resonant converter for battery charging applications to improve the performance of traditional switching-mode charger circuits. The charging voltage can be regulated by varying the switching frequency. The switching frequency of the parallel-loaded resonant battery charger was set at continuous conduction mode (CCM). Circuit operation modes are determined from the conduction profiles. Operating equations and operating theory are also developed. This study utilizes the fundamental wave approximation with a battery equivalent circuit to simplify the charger circuit analyses and presents an efficient, small-sized, and cost-effective switched-mode converter for battery chargers. A prototype charger with parallel-loaded resonant converter designed for a 12V-48Ah battery is built and tested to verify the analytical predictions. The maximum charging efficiency of the proposed battery charger topology is as high as 90.9%. Satisfactory performance is obtained from the experimental results.","PeriodicalId":178685,"journal":{"name":"2009 IEEE Industry Applications Society Annual Meeting","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Highly-Efficient Battery Chargers with Parallel-Loaded Resonant Converters\",\"authors\":\"Y. Chuang, Y. Ke, Shun-Yi Chang\",\"doi\":\"10.1109/IAS.2009.5324836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The well established advantages of resonant converters for battery chargers, including fast response, low switching losses, easy of the control scheme, simplicity of circuit configuration, and low electromagnetic interference (EMI), among others, have led to their increasing attraction. This work develops a highly efficient battery charger with a parallel-loaded resonant converter for battery charging applications to improve the performance of traditional switching-mode charger circuits. The charging voltage can be regulated by varying the switching frequency. The switching frequency of the parallel-loaded resonant battery charger was set at continuous conduction mode (CCM). Circuit operation modes are determined from the conduction profiles. Operating equations and operating theory are also developed. This study utilizes the fundamental wave approximation with a battery equivalent circuit to simplify the charger circuit analyses and presents an efficient, small-sized, and cost-effective switched-mode converter for battery chargers. A prototype charger with parallel-loaded resonant converter designed for a 12V-48Ah battery is built and tested to verify the analytical predictions. The maximum charging efficiency of the proposed battery charger topology is as high as 90.9%. Satisfactory performance is obtained from the experimental results.\",\"PeriodicalId\":178685,\"journal\":{\"name\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.5324836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.5324836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

用于电池充电器的谐振变换器具有响应快、开关损耗低、控制方案简单、电路配置简单、电磁干扰(EMI)低等优点,越来越受到人们的青睐。为了改进传统的开关模式充电电路的性能,本工作开发了一种具有并联负载谐振变换器的高效电池充电器,用于电池充电。充电电压可以通过改变开关频率来调节。将并联负载谐振式电池充电器的开关频率设置为连续导通模式。电路工作模式由传导曲线决定。还建立了操作方程和操作理论。本研究利用电池等效电路的基波近似来简化充电器电路的分析,并提出了一种高效、小尺寸、低成本的电池充电器开关模式转换器。设计了一款12V-48Ah电池的并联负载谐振变换器原型充电器,并对其进行了测试,以验证分析预测。所提出的电池充电器拓扑结构的最大充电效率高达90.9%。实验结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highly-Efficient Battery Chargers with Parallel-Loaded Resonant Converters
The well established advantages of resonant converters for battery chargers, including fast response, low switching losses, easy of the control scheme, simplicity of circuit configuration, and low electromagnetic interference (EMI), among others, have led to their increasing attraction. This work develops a highly efficient battery charger with a parallel-loaded resonant converter for battery charging applications to improve the performance of traditional switching-mode charger circuits. The charging voltage can be regulated by varying the switching frequency. The switching frequency of the parallel-loaded resonant battery charger was set at continuous conduction mode (CCM). Circuit operation modes are determined from the conduction profiles. Operating equations and operating theory are also developed. This study utilizes the fundamental wave approximation with a battery equivalent circuit to simplify the charger circuit analyses and presents an efficient, small-sized, and cost-effective switched-mode converter for battery chargers. A prototype charger with parallel-loaded resonant converter designed for a 12V-48Ah battery is built and tested to verify the analytical predictions. The maximum charging efficiency of the proposed battery charger topology is as high as 90.9%. Satisfactory performance is obtained from the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信