基于时空数据挖掘的铁路客流预测新方法

Wei Xu, Yong Qin, Houkuan Huang
{"title":"基于时空数据挖掘的铁路客流预测新方法","authors":"Wei Xu, Yong Qin, Houkuan Huang","doi":"10.1109/ITSC.2004.1398932","DOIUrl":null,"url":null,"abstract":"By analyzing the limitation of current passenger flow forecasting approach, This work presents a new approach to forecast the railway passenger flow based on spatio-temporal data mining. The approach first forecasts the time sequence of the target object using statistical principles, then figures out the spatial influence of neighbor objects using a neural network, and finally combines the two forecasting results using linear regression. The method is used in the forecast of railway passenger flow during the spring festival period of 2004. Comparing with the existing approaches that do not consider the spatial influence, our approach has better forecast accuracy.","PeriodicalId":239269,"journal":{"name":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A new method of railway passenger flow forecasting based on spatio-temporal data mining\",\"authors\":\"Wei Xu, Yong Qin, Houkuan Huang\",\"doi\":\"10.1109/ITSC.2004.1398932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By analyzing the limitation of current passenger flow forecasting approach, This work presents a new approach to forecast the railway passenger flow based on spatio-temporal data mining. The approach first forecasts the time sequence of the target object using statistical principles, then figures out the spatial influence of neighbor objects using a neural network, and finally combines the two forecasting results using linear regression. The method is used in the forecast of railway passenger flow during the spring festival period of 2004. Comparing with the existing approaches that do not consider the spatial influence, our approach has better forecast accuracy.\",\"PeriodicalId\":239269,\"journal\":{\"name\":\"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2004.1398932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No.04TH8749)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2004.1398932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在分析现有客流预测方法局限性的基础上,提出了一种基于时空数据挖掘的铁路客流预测新方法。该方法首先利用统计原理对目标物体的时间序列进行预测,然后利用神经网络计算相邻物体的空间影响,最后利用线性回归将两种预测结果结合起来。将该方法应用于2004年春运期间铁路客流预测。与不考虑空间影响的现有方法相比,该方法具有更好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method of railway passenger flow forecasting based on spatio-temporal data mining
By analyzing the limitation of current passenger flow forecasting approach, This work presents a new approach to forecast the railway passenger flow based on spatio-temporal data mining. The approach first forecasts the time sequence of the target object using statistical principles, then figures out the spatial influence of neighbor objects using a neural network, and finally combines the two forecasting results using linear regression. The method is used in the forecast of railway passenger flow during the spring festival period of 2004. Comparing with the existing approaches that do not consider the spatial influence, our approach has better forecast accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信