脉冲神经网络概述

Tian Jie, Liao Jianping, Wang Guangshuo, Xiao Fei
{"title":"脉冲神经网络概述","authors":"Tian Jie, Liao Jianping, Wang Guangshuo, Xiao Fei","doi":"10.1109/ICCWAMTIP56608.2022.10016558","DOIUrl":null,"url":null,"abstract":"In recent years, Artificial neural network has made great progress in image, machine perception and other aspects, and has a very good performance in the scope of deep learning. As a highly intensive neural network, Artificial neural network's performance has gradually reached saturation in today's increasing network demand, but its efficiency and consumption are still relatively large. Therefore, more and more attention has been paid to the peak neural network with low energy consumption in operating equipment. Spiking neural networks shows good performance of low power consumption when running on hardware. More and more researchers begin to use Spiking neural networks to study the performance of image recognition and other aspects. Although Spiking neural network has many limitations in accuracy and training difficulty, it has stimulated the research enthusiasm of many researchers. Spiking neural networks has developed rapidly, and many training methods can achieve the same or even higher accuracy than Artificial neural networks. In this paper, we further understand the advantages and framework of Spiking neural network through its development.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of Spikingneural Networks\",\"authors\":\"Tian Jie, Liao Jianping, Wang Guangshuo, Xiao Fei\",\"doi\":\"10.1109/ICCWAMTIP56608.2022.10016558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, Artificial neural network has made great progress in image, machine perception and other aspects, and has a very good performance in the scope of deep learning. As a highly intensive neural network, Artificial neural network's performance has gradually reached saturation in today's increasing network demand, but its efficiency and consumption are still relatively large. Therefore, more and more attention has been paid to the peak neural network with low energy consumption in operating equipment. Spiking neural networks shows good performance of low power consumption when running on hardware. More and more researchers begin to use Spiking neural networks to study the performance of image recognition and other aspects. Although Spiking neural network has many limitations in accuracy and training difficulty, it has stimulated the research enthusiasm of many researchers. Spiking neural networks has developed rapidly, and many training methods can achieve the same or even higher accuracy than Artificial neural networks. In this paper, we further understand the advantages and framework of Spiking neural network through its development.\",\"PeriodicalId\":159508,\"journal\":{\"name\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工神经网络在图像、机器感知等方面取得了很大的进步,在深度学习的范围内有着非常好的表现。人工神经网络作为一种高度密集的神经网络,在网络需求日益增长的今天,其性能已经逐渐达到饱和,但其效率和消耗仍然比较大。因此,低能耗的峰值神经网络在运行设备中越来越受到重视。在硬件上运行时,脉冲神经网络显示出较好的低功耗性能。越来越多的研究者开始利用脉冲神经网络来研究图像识别等方面的性能。尽管脉冲神经网络在准确性和训练难度上存在诸多局限性,但它激发了许多研究者的研究热情。脉冲神经网络发展迅速,许多训练方法可以达到与人工神经网络相同甚至更高的精度。本文通过对脉冲神经网络的发展,进一步了解了脉冲神经网络的优点和框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Overview of Spikingneural Networks
In recent years, Artificial neural network has made great progress in image, machine perception and other aspects, and has a very good performance in the scope of deep learning. As a highly intensive neural network, Artificial neural network's performance has gradually reached saturation in today's increasing network demand, but its efficiency and consumption are still relatively large. Therefore, more and more attention has been paid to the peak neural network with low energy consumption in operating equipment. Spiking neural networks shows good performance of low power consumption when running on hardware. More and more researchers begin to use Spiking neural networks to study the performance of image recognition and other aspects. Although Spiking neural network has many limitations in accuracy and training difficulty, it has stimulated the research enthusiasm of many researchers. Spiking neural networks has developed rapidly, and many training methods can achieve the same or even higher accuracy than Artificial neural networks. In this paper, we further understand the advantages and framework of Spiking neural network through its development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信