E. David, Raluca Boia, Alexandru Malaescu, Mihai Carnu
{"title":"内镜胶囊图像中结肠息肉的自动检测","authors":"E. David, Raluca Boia, Alexandru Malaescu, Mihai Carnu","doi":"10.1109/ISSCS.2013.6651196","DOIUrl":null,"url":null,"abstract":"This paper presents a method of automatic detection of colon polyps in endoscopic capsule images. This approach uses color and geometrical analysis of the images and uses histogram of gradients features and multilayer perceptron neural networks for performing the detection at multiple scales. The detection performance is tested using a database of 30540 images, 540 of them containing at least one polyp.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic colon polyp detection in endoscopic capsule images\",\"authors\":\"E. David, Raluca Boia, Alexandru Malaescu, Mihai Carnu\",\"doi\":\"10.1109/ISSCS.2013.6651196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method of automatic detection of colon polyps in endoscopic capsule images. This approach uses color and geometrical analysis of the images and uses histogram of gradients features and multilayer perceptron neural networks for performing the detection at multiple scales. The detection performance is tested using a database of 30540 images, 540 of them containing at least one polyp.\",\"PeriodicalId\":260263,\"journal\":{\"name\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2013.6651196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic colon polyp detection in endoscopic capsule images
This paper presents a method of automatic detection of colon polyps in endoscopic capsule images. This approach uses color and geometrical analysis of the images and uses histogram of gradients features and multilayer perceptron neural networks for performing the detection at multiple scales. The detection performance is tested using a database of 30540 images, 540 of them containing at least one polyp.