通过颜色,深度和运动线索在多视点视频中的对象分割

C. Çigla, Aydin Alatan
{"title":"通过颜色,深度和运动线索在多视点视频中的对象分割","authors":"C. Çigla, Aydin Alatan","doi":"10.1109/SIU.2009.5136484","DOIUrl":null,"url":null,"abstract":"In the light of dense depth map estimation, motion estimation and object segmentation, the research on multi-view video (MVV) content has becoming increasingly popular due to its wide application areas in the near future. In this work, object segmentation problem is studied by additional cues due to depth and motion fields. Segmentation is achieved by modeling images as graphical models and performing popular Normalized Cuts method with some modifications. In the graphical models, each node is represented by a group of pixels, instead of individual pixels, which are obtained as a result of over-segmentation of the images. These over-segmented regions are also utilized in the dense depth map estimation step; in which 3D planar models are assigned for each of these sub-regions. Moreover, optical flow is estimated based on affine motion assumption for these regions. The links of the graphical models are weighted according to the depth, motion and color similarities of the pixel groups due to these regions. Once the links are obtained, segmentation is achieved by recursively bi-partitioning the graph via removing the weak links. Experiments indicate that the proposed framework achieves precise segmentation results for MVV sequences.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Object segmentation in multi-view video via color, depth and motion cues\",\"authors\":\"C. Çigla, Aydin Alatan\",\"doi\":\"10.1109/SIU.2009.5136484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the light of dense depth map estimation, motion estimation and object segmentation, the research on multi-view video (MVV) content has becoming increasingly popular due to its wide application areas in the near future. In this work, object segmentation problem is studied by additional cues due to depth and motion fields. Segmentation is achieved by modeling images as graphical models and performing popular Normalized Cuts method with some modifications. In the graphical models, each node is represented by a group of pixels, instead of individual pixels, which are obtained as a result of over-segmentation of the images. These over-segmented regions are also utilized in the dense depth map estimation step; in which 3D planar models are assigned for each of these sub-regions. Moreover, optical flow is estimated based on affine motion assumption for these regions. The links of the graphical models are weighted according to the depth, motion and color similarities of the pixel groups due to these regions. Once the links are obtained, segmentation is achieved by recursively bi-partitioning the graph via removing the weak links. Experiments indicate that the proposed framework achieves precise segmentation results for MVV sequences.\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在密集深度图估计、运动估计和目标分割的背景下,多视点视频(MVV)内容的研究因其广泛的应用领域而在不久的将来日益受到关注。在这项工作中,研究了由于深度和运动场而产生的额外线索的目标分割问题。分割是通过将图像建模为图形模型,并对常用的归一化切割方法进行一些修改来实现的。在图形模型中,每个节点由一组像素表示,而不是单个像素,这些像素是由于图像的过度分割而获得的。这些过度分割的区域也被用于密集深度图估计步骤;其中为每个子区域分配三维平面模型。此外,根据这些区域的仿射运动假设估计了光流。图形模型的链接是根据这些区域产生的像素组的深度、运动和颜色相似度进行加权的。一旦获得链接,通过删除弱链接递归地对图进行双分区来实现分割。实验表明,该框架对MVV序列的分割效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object segmentation in multi-view video via color, depth and motion cues
In the light of dense depth map estimation, motion estimation and object segmentation, the research on multi-view video (MVV) content has becoming increasingly popular due to its wide application areas in the near future. In this work, object segmentation problem is studied by additional cues due to depth and motion fields. Segmentation is achieved by modeling images as graphical models and performing popular Normalized Cuts method with some modifications. In the graphical models, each node is represented by a group of pixels, instead of individual pixels, which are obtained as a result of over-segmentation of the images. These over-segmented regions are also utilized in the dense depth map estimation step; in which 3D planar models are assigned for each of these sub-regions. Moreover, optical flow is estimated based on affine motion assumption for these regions. The links of the graphical models are weighted according to the depth, motion and color similarities of the pixel groups due to these regions. Once the links are obtained, segmentation is achieved by recursively bi-partitioning the graph via removing the weak links. Experiments indicate that the proposed framework achieves precise segmentation results for MVV sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信