一种新的手写体词识别分割算法

M. Blumenstein, B. Verma
{"title":"一种新的手写体词识别分割算法","authors":"M. Blumenstein, B. Verma","doi":"10.1109/IJCNN.1999.833544","DOIUrl":null,"url":null,"abstract":"An algorithm for segmenting unconstrained printed and cursive words is proposed. The algorithm initially oversegments handwritten word images (for training and testing) using heuristics and feature detection. An artificial neural network (ANN) is then trained with global features extracted from segmentation points found in words designated for training. Segmentation points located in \"test\" word images are subsequently extracted and verified using the trained ANN. Two major sets of experiments were conducted, resulting in segmentation accuracies of 75.06% and 76.52%. The handwritten words used for experimentation were taken from the CEDAR CD-ROM. The results obtained for segmentation can easily be used for comparison with other researchers using the same benchmark database.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A new segmentation algorithm for handwritten word recognition\",\"authors\":\"M. Blumenstein, B. Verma\",\"doi\":\"10.1109/IJCNN.1999.833544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for segmenting unconstrained printed and cursive words is proposed. The algorithm initially oversegments handwritten word images (for training and testing) using heuristics and feature detection. An artificial neural network (ANN) is then trained with global features extracted from segmentation points found in words designated for training. Segmentation points located in \\\"test\\\" word images are subsequently extracted and verified using the trained ANN. Two major sets of experiments were conducted, resulting in segmentation accuracies of 75.06% and 76.52%. The handwritten words used for experimentation were taken from the CEDAR CD-ROM. The results obtained for segmentation can easily be used for comparison with other researchers using the same benchmark database.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"161 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.833544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

提出了一种无约束印刷字和草书字的分词算法。该算法最初使用启发式和特征检测对手写单词图像进行过度分割(用于训练和测试)。然后使用从指定训练词的分割点中提取的全局特征来训练人工神经网络。随后,使用训练好的人工神经网络提取并验证位于“测试”单词图像中的分割点。进行了两组主要实验,分割准确率分别为75.06%和76.52%。用于实验的手写文字取自CEDAR CD-ROM。分割得到的结果可以很容易地与使用相同基准数据库的其他研究人员进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new segmentation algorithm for handwritten word recognition
An algorithm for segmenting unconstrained printed and cursive words is proposed. The algorithm initially oversegments handwritten word images (for training and testing) using heuristics and feature detection. An artificial neural network (ANN) is then trained with global features extracted from segmentation points found in words designated for training. Segmentation points located in "test" word images are subsequently extracted and verified using the trained ANN. Two major sets of experiments were conducted, resulting in segmentation accuracies of 75.06% and 76.52%. The handwritten words used for experimentation were taken from the CEDAR CD-ROM. The results obtained for segmentation can easily be used for comparison with other researchers using the same benchmark database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信