线性分数表示工具箱(LFRT)的扩展

J. Magni
{"title":"线性分数表示工具箱(LFRT)的扩展","authors":"J. Magni","doi":"10.1109/CACSD.2004.1393886","DOIUrl":null,"url":null,"abstract":"The initial version of linear fractional representation toolbox was mostly devoted to modelling with a special emphasis to LFT order reduction. An LFT representation can be viewed as the realization of a symbolic expression, therefore, scheduled gains are LFTs. This paper presents an extension of this toolbox to scheduled feedback design in LFT form. The well-posedness problem of such feedback gains is addressed. In addition, some classical analysis techniques (Nyquist, Bode, step responses...) are adapted to LFT objects via parameter gridding","PeriodicalId":111199,"journal":{"name":"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extensions of the linear fractional representation toolbox (LFRT)\",\"authors\":\"J. Magni\",\"doi\":\"10.1109/CACSD.2004.1393886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The initial version of linear fractional representation toolbox was mostly devoted to modelling with a special emphasis to LFT order reduction. An LFT representation can be viewed as the realization of a symbolic expression, therefore, scheduled gains are LFTs. This paper presents an extension of this toolbox to scheduled feedback design in LFT form. The well-posedness problem of such feedback gains is addressed. In addition, some classical analysis techniques (Nyquist, Bode, step responses...) are adapted to LFT objects via parameter gridding\",\"PeriodicalId\":111199,\"journal\":{\"name\":\"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACSD.2004.1393886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACSD.2004.1393886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

线性分数表示工具箱的初始版本主要致力于建模,特别强调LFT降阶。LFT表示可以看作是符号表达式的实现,因此,调度增益就是LFT。本文将该工具箱扩展到LFT形式的计划反馈设计。解决了这种反馈增益的适定性问题。此外,一些经典的分析技术(Nyquist, Bode,阶跃响应等)通过参数网格化适用于LFT对象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extensions of the linear fractional representation toolbox (LFRT)
The initial version of linear fractional representation toolbox was mostly devoted to modelling with a special emphasis to LFT order reduction. An LFT representation can be viewed as the realization of a symbolic expression, therefore, scheduled gains are LFTs. This paper presents an extension of this toolbox to scheduled feedback design in LFT form. The well-posedness problem of such feedback gains is addressed. In addition, some classical analysis techniques (Nyquist, Bode, step responses...) are adapted to LFT objects via parameter gridding
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信