电力设备成本效益分析的长期价格预测

L. Petrichenko, A. Sauhats, R. Petrichenko, D. Bezrukovs
{"title":"电力设备成本效益分析的长期价格预测","authors":"L. Petrichenko, A. Sauhats, R. Petrichenko, D. Bezrukovs","doi":"10.1109/RTUCON.2018.8659888","DOIUrl":null,"url":null,"abstract":"Forecasting of electricity price plays a significant role in electrical network planning and development. In the present paper, we offer three prediction approaches: the naive method (NM), Fourier transformation (FT) with imposition of white noise and the artificial neural network (ANN) model. Our research proves the possibility of using any of three approaches due to the high forecasting accuracy of all of them. A case study using three types of forecasting methods, real-life data and a model of the distribution grid of our native country is presented to demonstrate the efficiency of our investigation and used to estimate the income generated by the energy storage system.","PeriodicalId":192943,"journal":{"name":"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Long-Term Price Forecasting for the Cost-Benefit Analysis of Power Equipment\",\"authors\":\"L. Petrichenko, A. Sauhats, R. Petrichenko, D. Bezrukovs\",\"doi\":\"10.1109/RTUCON.2018.8659888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting of electricity price plays a significant role in electrical network planning and development. In the present paper, we offer three prediction approaches: the naive method (NM), Fourier transformation (FT) with imposition of white noise and the artificial neural network (ANN) model. Our research proves the possibility of using any of three approaches due to the high forecasting accuracy of all of them. A case study using three types of forecasting methods, real-life data and a model of the distribution grid of our native country is presented to demonstrate the efficiency of our investigation and used to estimate the income generated by the energy storage system.\",\"PeriodicalId\":192943,\"journal\":{\"name\":\"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTUCON.2018.8659888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 59th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTUCON.2018.8659888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电价预测在电网规划和发展中起着重要的作用。本文提出了三种预测方法:朴素法(NM)、加白噪声的傅立叶变换(FT)和人工神经网络(ANN)模型。我们的研究证明了使用三种方法中的任何一种的可能性,因为它们都具有很高的预测精度。本文采用三种预测方法、实际数据和我国配电网模型进行了案例研究,以证明我们的调查是有效的,并用于估计储能系统产生的收入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Term Price Forecasting for the Cost-Benefit Analysis of Power Equipment
Forecasting of electricity price plays a significant role in electrical network planning and development. In the present paper, we offer three prediction approaches: the naive method (NM), Fourier transformation (FT) with imposition of white noise and the artificial neural network (ANN) model. Our research proves the possibility of using any of three approaches due to the high forecasting accuracy of all of them. A case study using three types of forecasting methods, real-life data and a model of the distribution grid of our native country is presented to demonstrate the efficiency of our investigation and used to estimate the income generated by the energy storage system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信