Kazuhito Sato, Shugo Yamaguchi, Tsukasa Takeda, S. Morishima
{"title":"用于物体运动模糊去除的可变形神经辐射场","authors":"Kazuhito Sato, Shugo Yamaguchi, Tsukasa Takeda, S. Morishima","doi":"10.1145/3588028.3603692","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel approach to remove object motion blur in 3D scene renderings using deformable neural radiance fields. Our technique adapts the hyperspace representation to accommodate shape changes induced by object motion blur. Experiments on Blender-generated datasets demonstrate the effectiveness of our method in producing higher-quality images with reduced object motion blur artifacts.","PeriodicalId":113397,"journal":{"name":"ACM SIGGRAPH 2023 Posters","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformable Neural Radiance Fields for Object Motion Blur Removal\",\"authors\":\"Kazuhito Sato, Shugo Yamaguchi, Tsukasa Takeda, S. Morishima\",\"doi\":\"10.1145/3588028.3603692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel approach to remove object motion blur in 3D scene renderings using deformable neural radiance fields. Our technique adapts the hyperspace representation to accommodate shape changes induced by object motion blur. Experiments on Blender-generated datasets demonstrate the effectiveness of our method in producing higher-quality images with reduced object motion blur artifacts.\",\"PeriodicalId\":113397,\"journal\":{\"name\":\"ACM SIGGRAPH 2023 Posters\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2023 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3588028.3603692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2023 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3588028.3603692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deformable Neural Radiance Fields for Object Motion Blur Removal
In this paper, we present a novel approach to remove object motion blur in 3D scene renderings using deformable neural radiance fields. Our technique adapts the hyperspace representation to accommodate shape changes induced by object motion blur. Experiments on Blender-generated datasets demonstrate the effectiveness of our method in producing higher-quality images with reduced object motion blur artifacts.