基于矩阵分解和光谱字典的光谱超分辨

Yongqiang Zhao, Chen Yi, Jingxiang Yang, J. Chan
{"title":"基于矩阵分解和光谱字典的光谱超分辨","authors":"Yongqiang Zhao, Chen Yi, Jingxiang Yang, J. Chan","doi":"10.1109/WHISPERS.2016.8071766","DOIUrl":null,"url":null,"abstract":"Spectral information in hyperspectral imagery (HSI) directly acquired by sensors, commonly with surplus bands and redundant information, takes high memory and transmission costs, resulting in reduced spatial resolution and aggravated spectral mixture. Therefore, the desired high spectral resolution HSI can be obtained via spectral super-resolution after acquiring original HSI with lower spectral resolution but relatively higher spatial resolution. In this paper, we proposed a spectral super-resolution method based on spectral matrix factorization and dictionary learning. High and low spectral resolution HSIs are assumed to have the same spatial resolution and share the same spectral signatures. So abundances of low spectral resolution imagery can provide high spatial information, while its endmembers can supply accurate spectral characteristics. Then several high spectral resolution HSIs in 2-D forms are utilized to train a spectral dictionary which contains both high spatial resolution information and high spectral resolution information. Finally, the desired spectral enhancement results are achieved through the use of spatial fidelity constraint. Experiments on Sandigo dataset indicated the superiority of our proposed method.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spectral super-resolution based on matrix factorization and spectral dictionary\",\"authors\":\"Yongqiang Zhao, Chen Yi, Jingxiang Yang, J. Chan\",\"doi\":\"10.1109/WHISPERS.2016.8071766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral information in hyperspectral imagery (HSI) directly acquired by sensors, commonly with surplus bands and redundant information, takes high memory and transmission costs, resulting in reduced spatial resolution and aggravated spectral mixture. Therefore, the desired high spectral resolution HSI can be obtained via spectral super-resolution after acquiring original HSI with lower spectral resolution but relatively higher spatial resolution. In this paper, we proposed a spectral super-resolution method based on spectral matrix factorization and dictionary learning. High and low spectral resolution HSIs are assumed to have the same spatial resolution and share the same spectral signatures. So abundances of low spectral resolution imagery can provide high spatial information, while its endmembers can supply accurate spectral characteristics. Then several high spectral resolution HSIs in 2-D forms are utilized to train a spectral dictionary which contains both high spatial resolution information and high spectral resolution information. Finally, the desired spectral enhancement results are achieved through the use of spatial fidelity constraint. Experiments on Sandigo dataset indicated the superiority of our proposed method.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传感器直接获取的高光谱图像中的光谱信息通常存在多余波段和冗余信息,存储和传输成本高,导致空间分辨率降低,光谱混合加剧。因此,在获得光谱分辨率较低但空间分辨率相对较高的原始HSI后,可以通过光谱超分辨率获得所需的高光谱分辨率HSI。本文提出了一种基于光谱矩阵分解和字典学习的光谱超分辨方法。假设高光谱分辨率和低光谱分辨率hsi具有相同的空间分辨率和相同的光谱特征。因此,低光谱分辨率图像的丰度可以提供高的空间信息,而其端元可以提供精确的光谱特征。然后利用二维形式的高光谱分辨率hsi来训练同时包含高空间分辨率信息和高光谱分辨率信息的光谱字典。最后,利用空间保真度约束实现了期望的光谱增强效果。在Sandigo数据集上的实验表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral super-resolution based on matrix factorization and spectral dictionary
Spectral information in hyperspectral imagery (HSI) directly acquired by sensors, commonly with surplus bands and redundant information, takes high memory and transmission costs, resulting in reduced spatial resolution and aggravated spectral mixture. Therefore, the desired high spectral resolution HSI can be obtained via spectral super-resolution after acquiring original HSI with lower spectral resolution but relatively higher spatial resolution. In this paper, we proposed a spectral super-resolution method based on spectral matrix factorization and dictionary learning. High and low spectral resolution HSIs are assumed to have the same spatial resolution and share the same spectral signatures. So abundances of low spectral resolution imagery can provide high spatial information, while its endmembers can supply accurate spectral characteristics. Then several high spectral resolution HSIs in 2-D forms are utilized to train a spectral dictionary which contains both high spatial resolution information and high spectral resolution information. Finally, the desired spectral enhancement results are achieved through the use of spatial fidelity constraint. Experiments on Sandigo dataset indicated the superiority of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信