Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, Mehdi Kaytoue, bon
{"title":"高维数值数据中的任意子群发现","authors":"Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, Mehdi Kaytoue, bon","doi":"10.1109/DSAA53316.2021.9564223","DOIUrl":null,"url":null,"abstract":"Subgroup discovery (SD) enables one to elicit patterns that strongly discriminate a class label. When it comes to numerical data, most of the existing SD approaches perform data discretizations and thus suffer from information loss. A few algorithms avoid such a loss by considering the search space of every interval pattern built on the dataset numerical values and provide an “anytime” property: at any moment, they are able to provide a result that improves over time. Given a sufficient time/memory budget, they may eventually complete an exhaustive search. However, such approaches are often intractable when dealing with high-dimensional numerical data, for instance, when extracting features from real-life multivariate time series. To overcome such limitations, we propose MonteCloPi, an approach based on a bottom-up exploration of numerical patterns with a Monte Carlo Tree Search. It enables to have a better exploration-exploitation trade-off between exploration and exploitation when sampling huge search spaces. Our extensive set of experiments proves the efficiency of MonteCloPi on high-dimensional data with hundreds of attributes. We finally discuss the actionability of discovered subgroups when looking for skill analysis from Rocket League action logs.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anytime Subgroup Discovery in High Dimensional Numerical Data\",\"authors\":\"Romain Mathonat, Diana Nurbakova, Jean-François Boulicaut, Mehdi Kaytoue, bon\",\"doi\":\"10.1109/DSAA53316.2021.9564223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subgroup discovery (SD) enables one to elicit patterns that strongly discriminate a class label. When it comes to numerical data, most of the existing SD approaches perform data discretizations and thus suffer from information loss. A few algorithms avoid such a loss by considering the search space of every interval pattern built on the dataset numerical values and provide an “anytime” property: at any moment, they are able to provide a result that improves over time. Given a sufficient time/memory budget, they may eventually complete an exhaustive search. However, such approaches are often intractable when dealing with high-dimensional numerical data, for instance, when extracting features from real-life multivariate time series. To overcome such limitations, we propose MonteCloPi, an approach based on a bottom-up exploration of numerical patterns with a Monte Carlo Tree Search. It enables to have a better exploration-exploitation trade-off between exploration and exploitation when sampling huge search spaces. Our extensive set of experiments proves the efficiency of MonteCloPi on high-dimensional data with hundreds of attributes. We finally discuss the actionability of discovered subgroups when looking for skill analysis from Rocket League action logs.\",\"PeriodicalId\":129612,\"journal\":{\"name\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSAA53316.2021.9564223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Anytime Subgroup Discovery in High Dimensional Numerical Data
Subgroup discovery (SD) enables one to elicit patterns that strongly discriminate a class label. When it comes to numerical data, most of the existing SD approaches perform data discretizations and thus suffer from information loss. A few algorithms avoid such a loss by considering the search space of every interval pattern built on the dataset numerical values and provide an “anytime” property: at any moment, they are able to provide a result that improves over time. Given a sufficient time/memory budget, they may eventually complete an exhaustive search. However, such approaches are often intractable when dealing with high-dimensional numerical data, for instance, when extracting features from real-life multivariate time series. To overcome such limitations, we propose MonteCloPi, an approach based on a bottom-up exploration of numerical patterns with a Monte Carlo Tree Search. It enables to have a better exploration-exploitation trade-off between exploration and exploitation when sampling huge search spaces. Our extensive set of experiments proves the efficiency of MonteCloPi on high-dimensional data with hundreds of attributes. We finally discuss the actionability of discovered subgroups when looking for skill analysis from Rocket League action logs.