具有不确定集装箱需求和行程时间的随机班轮船队重新定位问题

IF 2.1 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Stefan Kuhlemann , Jana Ksciuk , Kevin Tierney , Achim Koberstein
{"title":"具有不确定集装箱需求和行程时间的随机班轮船队重新定位问题","authors":"Stefan Kuhlemann ,&nbsp;Jana Ksciuk ,&nbsp;Kevin Tierney ,&nbsp;Achim Koberstein","doi":"10.1016/j.ejtl.2021.100052","DOIUrl":null,"url":null,"abstract":"<div><p>Liner shipping repositioning is the costly process of moving container ships between services in a liner shipping network to adjust the network to the changing demands of customers. Existing deterministic models for the liner shipping fleet repositioning problem (LSFRP) ignore the inherent uncertainty present in the input parameters. Assuming these parameters are deterministic could lead to extra costs when plans computed by a deterministic model are realized. We introduce an optimization model for the stochastic LSFRP that handles uncertainty regarding container demands and ship travel times. We extend existing LSFRP instances with uncertain parameters and use this new dataset to evaluate our model. We demonstrate the influence of uncertain demand and travel times on the resulting repositioning plans. Furthermore, we show that stochastic optimization generates solutions yielding up to ten times higher expected values and more robust solutions, measured against the CVaR90 objective, for decision-makers in the liner shipping industry compared to the application of deterministic optimization in the literature.</p></div>","PeriodicalId":45871,"journal":{"name":"EURO Journal on Transportation and Logistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ejtl.2021.100052","citationCount":"3","resultStr":"{\"title\":\"The stochastic liner shipping fleet repositioning problem with uncertain container demands and travel times\",\"authors\":\"Stefan Kuhlemann ,&nbsp;Jana Ksciuk ,&nbsp;Kevin Tierney ,&nbsp;Achim Koberstein\",\"doi\":\"10.1016/j.ejtl.2021.100052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liner shipping repositioning is the costly process of moving container ships between services in a liner shipping network to adjust the network to the changing demands of customers. Existing deterministic models for the liner shipping fleet repositioning problem (LSFRP) ignore the inherent uncertainty present in the input parameters. Assuming these parameters are deterministic could lead to extra costs when plans computed by a deterministic model are realized. We introduce an optimization model for the stochastic LSFRP that handles uncertainty regarding container demands and ship travel times. We extend existing LSFRP instances with uncertain parameters and use this new dataset to evaluate our model. We demonstrate the influence of uncertain demand and travel times on the resulting repositioning plans. Furthermore, we show that stochastic optimization generates solutions yielding up to ten times higher expected values and more robust solutions, measured against the CVaR90 objective, for decision-makers in the liner shipping industry compared to the application of deterministic optimization in the literature.</p></div>\",\"PeriodicalId\":45871,\"journal\":{\"name\":\"EURO Journal on Transportation and Logistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ejtl.2021.100052\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Transportation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192437621000224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Transportation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192437621000224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 3

摘要

班轮运输重新定位是在班轮运输网络中移动集装箱船以调整网络以适应客户不断变化的需求的昂贵过程。现有的班轮船队重新定位问题的确定性模型忽略了输入参数中存在的固有不确定性。当实现由确定性模型计算的计划时,假设这些参数是确定性的可能会导致额外的成本。我们介绍了一个随机LSFRP的优化模型,该模型处理关于集装箱需求和船舶旅行时间的不确定性。我们扩展了现有的具有不确定参数的LSFRP实例,并使用这个新的数据集来评估我们的模型。我们论证了不确定的需求和出行时间对重新定位方案的影响。此外,我们表明,与文献中的确定性优化应用相比,随机优化产生的解决方案产生高达10倍的期望值和更稳健的解决方案,针对CVaR90目标进行测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The stochastic liner shipping fleet repositioning problem with uncertain container demands and travel times

Liner shipping repositioning is the costly process of moving container ships between services in a liner shipping network to adjust the network to the changing demands of customers. Existing deterministic models for the liner shipping fleet repositioning problem (LSFRP) ignore the inherent uncertainty present in the input parameters. Assuming these parameters are deterministic could lead to extra costs when plans computed by a deterministic model are realized. We introduce an optimization model for the stochastic LSFRP that handles uncertainty regarding container demands and ship travel times. We extend existing LSFRP instances with uncertain parameters and use this new dataset to evaluate our model. We demonstrate the influence of uncertain demand and travel times on the resulting repositioning plans. Furthermore, we show that stochastic optimization generates solutions yielding up to ten times higher expected values and more robust solutions, measured against the CVaR90 objective, for decision-makers in the liner shipping industry compared to the application of deterministic optimization in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
24
审稿时长
129 days
期刊介绍: The EURO Journal on Transportation and Logistics promotes the use of mathematics in general, and operations research in particular, in the context of transportation and logistics. It is a forum for the presentation of original mathematical models, methodologies and computational results, focussing on advanced applications in transportation and logistics. The journal publishes two types of document: (i) research articles and (ii) tutorials. A research article presents original methodological contributions to the field (e.g. new mathematical models, new algorithms, new simulation techniques). A tutorial provides an introduction to an advanced topic, designed to ease the use of the relevant methodology by researchers and practitioners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信