推特政治氛围数据的收集与情感分析

Merima Čišija, E. Žunić, Dženana Đonko
{"title":"推特政治氛围数据的收集与情感分析","authors":"Merima Čišija, E. Žunić, Dženana Đonko","doi":"10.1109/NEUREL.2018.8586980","DOIUrl":null,"url":null,"abstract":"The past decade was marked, among other things, by the rapid growth of social networks. These networks collect personal data about their users - their photographs, interests, friends, locations, website visits, clicks, status updates and much more. A large number of users and a big collection of various data collected about the users make social media networks an abundant source of data that can be analyzed and used for targeted marketing, social phenomena analysis, generating different statistics and so on. In this paper we will use the potential of the tool RapidMiner in order to collect data from the social media network Twitter using the AYLIEN extension, preparing the data and applying sentiment analysis, which will give insight into the general atmosphere surrounding the actions of the current USA president Donald Trump","PeriodicalId":371831,"journal":{"name":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Collection and Sentiment Analysis of Twitter Data on the Political Atmosphere\",\"authors\":\"Merima Čišija, E. Žunić, Dženana Đonko\",\"doi\":\"10.1109/NEUREL.2018.8586980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The past decade was marked, among other things, by the rapid growth of social networks. These networks collect personal data about their users - their photographs, interests, friends, locations, website visits, clicks, status updates and much more. A large number of users and a big collection of various data collected about the users make social media networks an abundant source of data that can be analyzed and used for targeted marketing, social phenomena analysis, generating different statistics and so on. In this paper we will use the potential of the tool RapidMiner in order to collect data from the social media network Twitter using the AYLIEN extension, preparing the data and applying sentiment analysis, which will give insight into the general atmosphere surrounding the actions of the current USA president Donald Trump\",\"PeriodicalId\":371831,\"journal\":{\"name\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th Symposium on Neural Networks and Applications (NEUREL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2018.8586980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th Symposium on Neural Networks and Applications (NEUREL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2018.8586980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

过去十年的特点之一是社交网络的快速发展。这些网络收集用户的个人数据——他们的照片、兴趣、朋友、位置、网站访问、点击、状态更新等等。大量的用户和收集到的大量关于用户的各种数据使社交媒体网络成为一个丰富的数据来源,可以分析和用于针对性营销,社会现象分析,产生不同的统计数据等。在本文中,我们将使用RapidMiner工具的潜力,以便使用AYLIEN扩展从社交媒体网络Twitter收集数据,准备数据并应用情绪分析,这将深入了解当前美国总统唐纳德·特朗普的行动的总体氛围
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collection and Sentiment Analysis of Twitter Data on the Political Atmosphere
The past decade was marked, among other things, by the rapid growth of social networks. These networks collect personal data about their users - their photographs, interests, friends, locations, website visits, clicks, status updates and much more. A large number of users and a big collection of various data collected about the users make social media networks an abundant source of data that can be analyzed and used for targeted marketing, social phenomena analysis, generating different statistics and so on. In this paper we will use the potential of the tool RapidMiner in order to collect data from the social media network Twitter using the AYLIEN extension, preparing the data and applying sentiment analysis, which will give insight into the general atmosphere surrounding the actions of the current USA president Donald Trump
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信