数字化制造中的数据工程案例研究

István Pölöskei
{"title":"数字化制造中的数据工程案例研究","authors":"István Pölöskei","doi":"10.1109/SAMI50585.2021.9378691","DOIUrl":null,"url":null,"abstract":"The combination of big data and machine learning appears in the manufacturing context frequently. In a modern factory, data is collected everywhere. It is a challenge for the companies, finding their way to use the produced data. The model's quality is strongly dependent on the quality of the training dataset; the data engineer is responsible for the infrastructure, like providing context and quality input-data for machine learning algorithms. In the discussed case-study, a data pipeline is introduced as a potential solution. It proposes a strategy through the organization, from the shop floor to decision- makers.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Data engineering case-study in digitalized manufacturing\",\"authors\":\"István Pölöskei\",\"doi\":\"10.1109/SAMI50585.2021.9378691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of big data and machine learning appears in the manufacturing context frequently. In a modern factory, data is collected everywhere. It is a challenge for the companies, finding their way to use the produced data. The model's quality is strongly dependent on the quality of the training dataset; the data engineer is responsible for the infrastructure, like providing context and quality input-data for machine learning algorithms. In the discussed case-study, a data pipeline is introduced as a potential solution. It proposes a strategy through the organization, from the shop floor to decision- makers.\",\"PeriodicalId\":402414,\"journal\":{\"name\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"2012 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI50585.2021.9378691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大数据和机器学习的结合经常出现在制造业环境中。在现代工厂里,数据无处不在。这对企业来说是一个挑战,它们需要找到使用生成数据的方法。模型的质量强烈依赖于训练数据集的质量;数据工程师负责基础设施,比如为机器学习算法提供上下文和高质量的输入数据。在讨论的案例研究中,数据管道作为一种潜在的解决方案被引入。它提出了一个战略,通过组织,从车间到决策者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data engineering case-study in digitalized manufacturing
The combination of big data and machine learning appears in the manufacturing context frequently. In a modern factory, data is collected everywhere. It is a challenge for the companies, finding their way to use the produced data. The model's quality is strongly dependent on the quality of the training dataset; the data engineer is responsible for the infrastructure, like providing context and quality input-data for machine learning algorithms. In the discussed case-study, a data pipeline is introduced as a potential solution. It proposes a strategy through the organization, from the shop floor to decision- makers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信