霍乱模型的全局稳定性与防控

M. Ibrahim, A. A. Ayoade, O. J. Peter, F. Oguntolu
{"title":"霍乱模型的全局稳定性与防控","authors":"M. Ibrahim, A. A. Ayoade, O. J. Peter, F. Oguntolu","doi":"10.24191/mjoc.v3i1.4812","DOIUrl":null,"url":null,"abstract":"In this study, a system of first order ordinary differential equations is used to analyse the dynamics of cholera disease via a mathematical model extended from Fung (2014) cholera model. The global stability analysis is conducted for the extended model by suitable Lyapunov function and LaSalle’s invariance principle. It is shown that the disease free equilibrium (DFE) for the extended model is globally asymptotically stable if 𝑅0 𝑞 < 1 and the disease eventually disappears in the population with time while there exists a unique endemic equilibrium that is globally asymptotically stable whenever 𝑅0 𝑞 > 1 for the extended model or 𝑅0 > 1 for the original model and the disease persists at a positive level though with mild waves (i.e few cases of cholera) in the case of𝑅0 𝑞 > 1. Numerical simulations for strong, weak, and no prevention and control measures are carried out to verify the analytical results and Maple 18 is used to carry out the computations.","PeriodicalId":129482,"journal":{"name":"MALAYSIAN JOURNAL OF COMPUTING","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"ON THE GLOBAL STABILITY OF CHOLERA MODEL WITH PREVENTION AND CONTROL\",\"authors\":\"M. Ibrahim, A. A. Ayoade, O. J. Peter, F. Oguntolu\",\"doi\":\"10.24191/mjoc.v3i1.4812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a system of first order ordinary differential equations is used to analyse the dynamics of cholera disease via a mathematical model extended from Fung (2014) cholera model. The global stability analysis is conducted for the extended model by suitable Lyapunov function and LaSalle’s invariance principle. It is shown that the disease free equilibrium (DFE) for the extended model is globally asymptotically stable if 𝑅0 𝑞 < 1 and the disease eventually disappears in the population with time while there exists a unique endemic equilibrium that is globally asymptotically stable whenever 𝑅0 𝑞 > 1 for the extended model or 𝑅0 > 1 for the original model and the disease persists at a positive level though with mild waves (i.e few cases of cholera) in the case of𝑅0 𝑞 > 1. Numerical simulations for strong, weak, and no prevention and control measures are carried out to verify the analytical results and Maple 18 is used to carry out the computations.\",\"PeriodicalId\":129482,\"journal\":{\"name\":\"MALAYSIAN JOURNAL OF COMPUTING\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MALAYSIAN JOURNAL OF COMPUTING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24191/mjoc.v3i1.4812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALAYSIAN JOURNAL OF COMPUTING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24191/mjoc.v3i1.4812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本研究中,一阶常微分方程系统通过从Fung(2014)霍乱模型扩展的数学模型来分析霍乱疾病的动力学。利用合适的Lyapunov函数和LaSalle不变性原理对扩展模型进行了全局稳定性分析。结果表明,无病平衡(DFE)扩展的模型是全局渐近稳定如果𝑅0𝑞< 1和疾病最终消失在人群中随着时间的推移而存在一个唯一地方病平衡点是全局渐近稳定时𝑅0𝑞> 1扩展模型或𝑅0 > 1为原始模型和疾病持续积极的水平虽然有轻度波(即一些霍乱病例)的𝑅0𝑞> 1。采用Maple 18进行了强、弱、无防治措施三种情况下的数值模拟,验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE GLOBAL STABILITY OF CHOLERA MODEL WITH PREVENTION AND CONTROL
In this study, a system of first order ordinary differential equations is used to analyse the dynamics of cholera disease via a mathematical model extended from Fung (2014) cholera model. The global stability analysis is conducted for the extended model by suitable Lyapunov function and LaSalle’s invariance principle. It is shown that the disease free equilibrium (DFE) for the extended model is globally asymptotically stable if 𝑅0 𝑞 < 1 and the disease eventually disappears in the population with time while there exists a unique endemic equilibrium that is globally asymptotically stable whenever 𝑅0 𝑞 > 1 for the extended model or 𝑅0 > 1 for the original model and the disease persists at a positive level though with mild waves (i.e few cases of cholera) in the case of𝑅0 𝑞 > 1. Numerical simulations for strong, weak, and no prevention and control measures are carried out to verify the analytical results and Maple 18 is used to carry out the computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信