详细查询中的参数化概念权重

Michael Bendersky, Donald Metzler, W. Bruce Croft
{"title":"详细查询中的参数化概念权重","authors":"Michael Bendersky, Donald Metzler, W. Bruce Croft","doi":"10.1145/2009916.2009998","DOIUrl":null,"url":null,"abstract":"The majority of the current information retrieval models weight the query concepts (e.g., terms or phrases) in an unsupervised manner, based solely on the collection statistics. In this paper, we go beyond the unsupervised estimation of concept weights, and propose a parameterized concept weighting model. In our model, the weight of each query concept is determined using a parameterized combination of diverse importance features. Unlike the existing supervised ranking methods, our model learns importance weights not only for the explicit query concepts, but also for the latent concepts that are associated with the query through pseudo-relevance feedback. The experimental results on both newswire and web TREC corpora show that our model consistently and significantly outperforms a wide range of state-of-the-art retrieval models. In addition, our model significantly reduces the number of latent concepts used for query expansion compared to the non-parameterized pseudo-relevance feedback based models.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Parameterized concept weighting in verbose queries\",\"authors\":\"Michael Bendersky, Donald Metzler, W. Bruce Croft\",\"doi\":\"10.1145/2009916.2009998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority of the current information retrieval models weight the query concepts (e.g., terms or phrases) in an unsupervised manner, based solely on the collection statistics. In this paper, we go beyond the unsupervised estimation of concept weights, and propose a parameterized concept weighting model. In our model, the weight of each query concept is determined using a parameterized combination of diverse importance features. Unlike the existing supervised ranking methods, our model learns importance weights not only for the explicit query concepts, but also for the latent concepts that are associated with the query through pseudo-relevance feedback. The experimental results on both newswire and web TREC corpora show that our model consistently and significantly outperforms a wide range of state-of-the-art retrieval models. In addition, our model significantly reduces the number of latent concepts used for query expansion compared to the non-parameterized pseudo-relevance feedback based models.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2009998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2009998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

摘要

当前的大多数信息检索模型仅基于集合统计数据,以一种无监督的方式对查询概念(例如,术语或短语)进行加权。本文超越了概念权值的无监督估计,提出了一种参数化的概念权值模型。在我们的模型中,每个查询概念的权重是使用不同重要性特征的参数化组合来确定的。与现有的监督排序方法不同,我们的模型不仅可以学习显式查询概念的重要性权重,还可以通过伪相关反馈学习与查询相关的潜在概念的重要性权重。在新闻通讯社和web TREC语料库上的实验结果表明,我们的模型一致且显著优于许多最先进的检索模型。此外,与非参数化的基于伪相关反馈的模型相比,我们的模型显著减少了用于查询扩展的潜在概念的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameterized concept weighting in verbose queries
The majority of the current information retrieval models weight the query concepts (e.g., terms or phrases) in an unsupervised manner, based solely on the collection statistics. In this paper, we go beyond the unsupervised estimation of concept weights, and propose a parameterized concept weighting model. In our model, the weight of each query concept is determined using a parameterized combination of diverse importance features. Unlike the existing supervised ranking methods, our model learns importance weights not only for the explicit query concepts, but also for the latent concepts that are associated with the query through pseudo-relevance feedback. The experimental results on both newswire and web TREC corpora show that our model consistently and significantly outperforms a wide range of state-of-the-art retrieval models. In addition, our model significantly reduces the number of latent concepts used for query expansion compared to the non-parameterized pseudo-relevance feedback based models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信