{"title":"高维动态条件协方差矩阵的正则半参数估计","authors":"C. Morana","doi":"10.2139/ssrn.3190500","DOIUrl":null,"url":null,"abstract":"Abstract A three-step estimation strategy for dynamic conditional correlation (DCC) models is proposed. In the first step, conditional variances for individual and aggregate series are estimated by means of QML equation by equation. In the second step, conditional covariances are estimated by means of the polarization identity and conditional correlations are estimated by their usual normalization. In the third step, the two-step conditional covariance and correlation matrices are regularized by means of a new non-linear shrinkage procedure and optimally smoothed. Due to its scant computational burden, the proposed regularized semiparametric DCC model (RSP-DCC) allows to estimate high dimensional conditional covariance and correlation matrices. An application to global minimum variance portfolio is also provided, confirming that RSP-DCC is a simple and viable alternative to existing DCC models.","PeriodicalId":415063,"journal":{"name":"University of Milan Bicocca Department of Economics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Regularized Semiparametric Estimation of High Dimensional Dynamic Conditional Covariance Matrices\",\"authors\":\"C. Morana\",\"doi\":\"10.2139/ssrn.3190500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A three-step estimation strategy for dynamic conditional correlation (DCC) models is proposed. In the first step, conditional variances for individual and aggregate series are estimated by means of QML equation by equation. In the second step, conditional covariances are estimated by means of the polarization identity and conditional correlations are estimated by their usual normalization. In the third step, the two-step conditional covariance and correlation matrices are regularized by means of a new non-linear shrinkage procedure and optimally smoothed. Due to its scant computational burden, the proposed regularized semiparametric DCC model (RSP-DCC) allows to estimate high dimensional conditional covariance and correlation matrices. An application to global minimum variance portfolio is also provided, confirming that RSP-DCC is a simple and viable alternative to existing DCC models.\",\"PeriodicalId\":415063,\"journal\":{\"name\":\"University of Milan Bicocca Department of Economics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"University of Milan Bicocca Department of Economics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3190500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"University of Milan Bicocca Department of Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3190500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regularized Semiparametric Estimation of High Dimensional Dynamic Conditional Covariance Matrices
Abstract A three-step estimation strategy for dynamic conditional correlation (DCC) models is proposed. In the first step, conditional variances for individual and aggregate series are estimated by means of QML equation by equation. In the second step, conditional covariances are estimated by means of the polarization identity and conditional correlations are estimated by their usual normalization. In the third step, the two-step conditional covariance and correlation matrices are regularized by means of a new non-linear shrinkage procedure and optimally smoothed. Due to its scant computational burden, the proposed regularized semiparametric DCC model (RSP-DCC) allows to estimate high dimensional conditional covariance and correlation matrices. An application to global minimum variance portfolio is also provided, confirming that RSP-DCC is a simple and viable alternative to existing DCC models.