基于物理- sn传感结果预测的自适应传输控制

Kyosuke Fukuda, O. Takyu, K. Shirai, T. Fujii, M. Ohta, F. Sasamori, Sliiro Handa
{"title":"基于物理- sn传感结果预测的自适应传输控制","authors":"Kyosuke Fukuda, O. Takyu, K. Shirai, T. Fujii, M. Ohta, F. Sasamori, Sliiro Handa","doi":"10.1109/RWS.2019.8714380","DOIUrl":null,"url":null,"abstract":"Wireless sensor networks are important data transfer system for supporting IoT. Since the application of IoT is widely spread, the requirement of WSN is diversified. Physical wireless parameter conversion sensor networks (PhyC-SN) can support the real time data collection and the affordability of collecting the sensing results from a lot of sensors. However, PhyC-SN cannot detect each sensing results, separately. The data tracking technique with using time continuity as tracking criterion is available for data separation but the error tracking occurs if sensing results are close. This paper proposes the transmission technique with the prediction of sensing results for the data separation of PhyC-SN. From the predicted sensing results, FC can estimate the occurrence of error tracking and switch access protocol from simultaneous access to time division access for avoiding error tracking. From the computer simulation, the proposed transmission technique achieves the more highly accurate data collection than time division multiple access and conventional PhyC-SN.","PeriodicalId":131330,"journal":{"name":"2019 IEEE Radio and Wireless Symposium (RWS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Transmission Control with Prediction of Sensing Results for PhyC-SN\",\"authors\":\"Kyosuke Fukuda, O. Takyu, K. Shirai, T. Fujii, M. Ohta, F. Sasamori, Sliiro Handa\",\"doi\":\"10.1109/RWS.2019.8714380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless sensor networks are important data transfer system for supporting IoT. Since the application of IoT is widely spread, the requirement of WSN is diversified. Physical wireless parameter conversion sensor networks (PhyC-SN) can support the real time data collection and the affordability of collecting the sensing results from a lot of sensors. However, PhyC-SN cannot detect each sensing results, separately. The data tracking technique with using time continuity as tracking criterion is available for data separation but the error tracking occurs if sensing results are close. This paper proposes the transmission technique with the prediction of sensing results for the data separation of PhyC-SN. From the predicted sensing results, FC can estimate the occurrence of error tracking and switch access protocol from simultaneous access to time division access for avoiding error tracking. From the computer simulation, the proposed transmission technique achieves the more highly accurate data collection than time division multiple access and conventional PhyC-SN.\",\"PeriodicalId\":131330,\"journal\":{\"name\":\"2019 IEEE Radio and Wireless Symposium (RWS)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Radio and Wireless Symposium (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2019.8714380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Radio and Wireless Symposium (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2019.8714380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无线传感器网络是支持物联网的重要数据传输系统。随着物联网的广泛应用,对无线传感器网络的需求也越来越多样化。物理无线参数转换传感器网络(Physical wireless parameter conversion sensor network,物理无线参数转换传感器网络)能够支持实时数据采集,并且具有从多个传感器采集传感结果的可承受性。但是,physical - sn不能单独检测每个传感结果。以时间连续性为跟踪准则的数据跟踪技术可用于数据分离,但如果传感结果接近,则会产生误差跟踪。提出了基于传感结果预测的物理- sn数据分离传输技术。根据预测的传感结果,FC可以估计出错误跟踪的发生情况,并从同时接入到时分接入的切换接入协议中避免错误跟踪。计算机仿真结果表明,所提出的传输技术比时分多址和传统的physical - sn实现了更高的数据采集精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Transmission Control with Prediction of Sensing Results for PhyC-SN
Wireless sensor networks are important data transfer system for supporting IoT. Since the application of IoT is widely spread, the requirement of WSN is diversified. Physical wireless parameter conversion sensor networks (PhyC-SN) can support the real time data collection and the affordability of collecting the sensing results from a lot of sensors. However, PhyC-SN cannot detect each sensing results, separately. The data tracking technique with using time continuity as tracking criterion is available for data separation but the error tracking occurs if sensing results are close. This paper proposes the transmission technique with the prediction of sensing results for the data separation of PhyC-SN. From the predicted sensing results, FC can estimate the occurrence of error tracking and switch access protocol from simultaneous access to time division access for avoiding error tracking. From the computer simulation, the proposed transmission technique achieves the more highly accurate data collection than time division multiple access and conventional PhyC-SN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信