利用遗传算法掌握三维物体的规划

Zichen Zhang, J. Gu
{"title":"利用遗传算法掌握三维物体的规划","authors":"Zichen Zhang, J. Gu","doi":"10.1109/ICAL.2012.6308157","DOIUrl":null,"url":null,"abstract":"In this paper, we apply genetic algorithm (GA) to the optimization problem in grasp planning. This method can be used to find “pregrasps” for 3D objects in arbitrary shape and different dexterous hands, which serve as the first step of a complete grasping action. Each component of the GA planner is discussed in detail. The proposed algorithm is implemented in GraspIt! simulator [1]. It is tested on different hand-object combinations and the result shows that genetic algorithm is effective in finding high-quality pregrasps.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Grasp planning of 3D objects using genetic algorithm\",\"authors\":\"Zichen Zhang, J. Gu\",\"doi\":\"10.1109/ICAL.2012.6308157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply genetic algorithm (GA) to the optimization problem in grasp planning. This method can be used to find “pregrasps” for 3D objects in arbitrary shape and different dexterous hands, which serve as the first step of a complete grasping action. Each component of the GA planner is discussed in detail. The proposed algorithm is implemented in GraspIt! simulator [1]. It is tested on different hand-object combinations and the result shows that genetic algorithm is effective in finding high-quality pregrasps.\",\"PeriodicalId\":373152,\"journal\":{\"name\":\"2012 IEEE International Conference on Automation and Logistics\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Automation and Logistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAL.2012.6308157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文将遗传算法应用于抓取规划中的优化问题。该方法可用于寻找任意形状和不同灵巧手的三维物体的“预抓点”,作为完整抓握动作的第一步。详细讨论了GA规划器的各个组成部分。该算法在GraspIt!模拟器[1]。在不同的手-目标组合上进行了测试,结果表明遗传算法在寻找高质量的预抓取方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grasp planning of 3D objects using genetic algorithm
In this paper, we apply genetic algorithm (GA) to the optimization problem in grasp planning. This method can be used to find “pregrasps” for 3D objects in arbitrary shape and different dexterous hands, which serve as the first step of a complete grasping action. Each component of the GA planner is discussed in detail. The proposed algorithm is implemented in GraspIt! simulator [1]. It is tested on different hand-object combinations and the result shows that genetic algorithm is effective in finding high-quality pregrasps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信