SAR分辨率对CNN自动建筑物分割的影响

Sandhi Wangiyana, P. Samczyński, A. Gromek
{"title":"SAR分辨率对CNN自动建筑物分割的影响","authors":"Sandhi Wangiyana, P. Samczyński, A. Gromek","doi":"10.1109/spsympo51155.2020.9593636","DOIUrl":null,"url":null,"abstract":"Successful deep learning (DL) models for Synthetic Aperture Radar (SAR) images mostly require high-resolution images. The lack of datasets for historical and publicly available SAR images in high-resolution quality limits DL applications for SAR. We simulate SAR resolution scaling by applying filters with varying strengths in the preprocessing step of the dataset. A segmentation model is trained on each dataset along with different model architecture and backbone. The Feature Pyramid Network (FPN) model achieved the best results while being robust for datasets with weak filtering.","PeriodicalId":380515,"journal":{"name":"2021 Signal Processing Symposium (SPSympo)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of SAR Resolution in Automatic Building Segmentation Using CNN\",\"authors\":\"Sandhi Wangiyana, P. Samczyński, A. Gromek\",\"doi\":\"10.1109/spsympo51155.2020.9593636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successful deep learning (DL) models for Synthetic Aperture Radar (SAR) images mostly require high-resolution images. The lack of datasets for historical and publicly available SAR images in high-resolution quality limits DL applications for SAR. We simulate SAR resolution scaling by applying filters with varying strengths in the preprocessing step of the dataset. A segmentation model is trained on each dataset along with different model architecture and backbone. The Feature Pyramid Network (FPN) model achieved the best results while being robust for datasets with weak filtering.\",\"PeriodicalId\":380515,\"journal\":{\"name\":\"2021 Signal Processing Symposium (SPSympo)\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Signal Processing Symposium (SPSympo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spsympo51155.2020.9593636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Signal Processing Symposium (SPSympo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spsympo51155.2020.9593636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

成功的合成孔径雷达(SAR)图像深度学习(DL)模型大多需要高分辨率图像。由于缺乏高分辨率的历史和公开可用的SAR图像数据集,限制了深度学习在SAR中的应用。我们通过在数据集的预处理步骤中应用不同强度的滤波器来模拟SAR分辨率缩放。在每个数据集上训练一个具有不同模型结构和主干的分割模型。特征金字塔网络(Feature Pyramid Network, FPN)模型对于弱过滤的数据集具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of SAR Resolution in Automatic Building Segmentation Using CNN
Successful deep learning (DL) models for Synthetic Aperture Radar (SAR) images mostly require high-resolution images. The lack of datasets for historical and publicly available SAR images in high-resolution quality limits DL applications for SAR. We simulate SAR resolution scaling by applying filters with varying strengths in the preprocessing step of the dataset. A segmentation model is trained on each dataset along with different model architecture and backbone. The Feature Pyramid Network (FPN) model achieved the best results while being robust for datasets with weak filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信