光度立体与光谱分析在高光谱影像烧伤可视化与评估中的比较

Houzhu Ding, R. Chang
{"title":"光度立体与光谱分析在高光谱影像烧伤可视化与评估中的比较","authors":"Houzhu Ding, R. Chang","doi":"10.1109/CIVEMSA.2015.7158598","DOIUrl":null,"url":null,"abstract":"Burn wounds resulting from thermal insult to the skin are typically classified according to varying depth and therefore require differential levels of medical intervention. In this paper, two methods are proposed for assessing burn injury. The two methods compared are photometric stereo (PS) and spectral analysis. Firstly, PS represents a robust topography recovery algorithm that is implemented to reconstruct the burn and normal skin tissue from multiple hyperspectral images under different illumination conditions. This enabled the visualization of a 3D skin depth map which is used to assess the burn degree. Next, the hyperspectral measurement data of the skin are analyzed to assess partial thickness thermal injury with functional correlation through hemodynamic parameters related to tissue perfusion and oxygen delivery. Two dimensional principle component analysis (2DPCA) is used for noise reduction towards extracting features from the hyperspectral images within the wavelength range from 375 nm to 1050 nm. This is followed by applying the spectral analysis algorithm to calculate oxygen saturation fraction and concentration of total hemoglobin, where each parameter provided a biomarker of injured tissue. The two methods yielded alternative indicators for burn assessment that could be correlated with each other. Specifically, the spectral measurement result could be used as a reference value for the physical skin site depth map.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparison of photometric stereo and spectral analysis for visualization and assessment of burn injury from hyperspectral imaging\",\"authors\":\"Houzhu Ding, R. Chang\",\"doi\":\"10.1109/CIVEMSA.2015.7158598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Burn wounds resulting from thermal insult to the skin are typically classified according to varying depth and therefore require differential levels of medical intervention. In this paper, two methods are proposed for assessing burn injury. The two methods compared are photometric stereo (PS) and spectral analysis. Firstly, PS represents a robust topography recovery algorithm that is implemented to reconstruct the burn and normal skin tissue from multiple hyperspectral images under different illumination conditions. This enabled the visualization of a 3D skin depth map which is used to assess the burn degree. Next, the hyperspectral measurement data of the skin are analyzed to assess partial thickness thermal injury with functional correlation through hemodynamic parameters related to tissue perfusion and oxygen delivery. Two dimensional principle component analysis (2DPCA) is used for noise reduction towards extracting features from the hyperspectral images within the wavelength range from 375 nm to 1050 nm. This is followed by applying the spectral analysis algorithm to calculate oxygen saturation fraction and concentration of total hemoglobin, where each parameter provided a biomarker of injured tissue. The two methods yielded alternative indicators for burn assessment that could be correlated with each other. Specifically, the spectral measurement result could be used as a reference value for the physical skin site depth map.\",\"PeriodicalId\":348918,\"journal\":{\"name\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2015.7158598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

皮肤热损伤造成的烧伤通常根据不同的深度分类,因此需要不同程度的医疗干预。本文提出了两种评估烧伤损伤的方法。比较了光度立体(PS)和光谱分析两种方法。首先,PS代表了一种鲁棒的地形恢复算法,该算法实现了从不同光照条件下的多幅高光谱图像中重建烧伤和正常皮肤组织。这使得3D皮肤深度图可视化,用于评估烧伤程度。接下来,分析皮肤的高光谱测量数据,通过与组织灌注和供氧相关的血流动力学参数,评估具有功能相关性的局部厚度热损伤。采用二维主成分分析(2DPCA)对375 ~ 1050 nm波长范围内的高光谱图像进行降噪处理。然后应用光谱分析算法计算氧饱和度分数和总血红蛋白浓度,其中每个参数都提供了损伤组织的生物标志物。这两种方法产生了可以相互关联的烧伤评估的替代指标。具体而言,光谱测量结果可作为物理皮肤部位深度图的参考值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of photometric stereo and spectral analysis for visualization and assessment of burn injury from hyperspectral imaging
Burn wounds resulting from thermal insult to the skin are typically classified according to varying depth and therefore require differential levels of medical intervention. In this paper, two methods are proposed for assessing burn injury. The two methods compared are photometric stereo (PS) and spectral analysis. Firstly, PS represents a robust topography recovery algorithm that is implemented to reconstruct the burn and normal skin tissue from multiple hyperspectral images under different illumination conditions. This enabled the visualization of a 3D skin depth map which is used to assess the burn degree. Next, the hyperspectral measurement data of the skin are analyzed to assess partial thickness thermal injury with functional correlation through hemodynamic parameters related to tissue perfusion and oxygen delivery. Two dimensional principle component analysis (2DPCA) is used for noise reduction towards extracting features from the hyperspectral images within the wavelength range from 375 nm to 1050 nm. This is followed by applying the spectral analysis algorithm to calculate oxygen saturation fraction and concentration of total hemoglobin, where each parameter provided a biomarker of injured tissue. The two methods yielded alternative indicators for burn assessment that could be correlated with each other. Specifically, the spectral measurement result could be used as a reference value for the physical skin site depth map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信