基于新型PD定价反馈策略的智能电网分布式最优能源调度

Fanghong Guo, C. Wen, Zhengguo Li
{"title":"基于新型PD定价反馈策略的智能电网分布式最优能源调度","authors":"Fanghong Guo, C. Wen, Zhengguo Li","doi":"10.1109/ICIEA.2015.7334112","DOIUrl":null,"url":null,"abstract":"Pricing function plays an important role in optimal energy scheduling problem in smart grid systems. In this paper, we propose a novel real time pricing strategy named proportional and derivative (PD) pricing strategy. An optimal energy scheduling problem is then formulated by minimizing the total social cost of the overall power system. A distributed optimization algorithm based on finite-time consensus and projected gradient method is provided for each agent to iteratively determine an optimal solution to the problem. As iteration increases, the solutions from all the agents reach consensus and this solves the formulated optimal problem. A case study of heating ventilation and air conditioning (HVAC) system shows efficiency of the proposed algorithm.","PeriodicalId":270660,"journal":{"name":"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Distributed optimal energy scheduling based on a novel PD pricing feedback strategy in smart grid\",\"authors\":\"Fanghong Guo, C. Wen, Zhengguo Li\",\"doi\":\"10.1109/ICIEA.2015.7334112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pricing function plays an important role in optimal energy scheduling problem in smart grid systems. In this paper, we propose a novel real time pricing strategy named proportional and derivative (PD) pricing strategy. An optimal energy scheduling problem is then formulated by minimizing the total social cost of the overall power system. A distributed optimization algorithm based on finite-time consensus and projected gradient method is provided for each agent to iteratively determine an optimal solution to the problem. As iteration increases, the solutions from all the agents reach consensus and this solves the formulated optimal problem. A case study of heating ventilation and air conditioning (HVAC) system shows efficiency of the proposed algorithm.\",\"PeriodicalId\":270660,\"journal\":{\"name\":\"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2015.7334112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2015.7334112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

定价函数在智能电网系统的最优能源调度问题中起着重要的作用。本文提出了一种新的实时定价策略——比例衍生定价策略。以整个电力系统的总社会成本最小为目标,建立了最优能源调度问题。提出了一种基于有限时间一致性和投影梯度法的分布式优化算法,使每个智能体迭代确定问题的最优解。随着迭代次数的增加,所有智能体的解趋于一致,从而解决了公式化的最优问题。以暖通空调(HVAC)系统为例,验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed optimal energy scheduling based on a novel PD pricing feedback strategy in smart grid
Pricing function plays an important role in optimal energy scheduling problem in smart grid systems. In this paper, we propose a novel real time pricing strategy named proportional and derivative (PD) pricing strategy. An optimal energy scheduling problem is then formulated by minimizing the total social cost of the overall power system. A distributed optimization algorithm based on finite-time consensus and projected gradient method is provided for each agent to iteratively determine an optimal solution to the problem. As iteration increases, the solutions from all the agents reach consensus and this solves the formulated optimal problem. A case study of heating ventilation and air conditioning (HVAC) system shows efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信