利用时序基因表达数据的信号处理度量识别时序基因网络

A. Agrawal, A. Mittal
{"title":"利用时序基因表达数据的信号处理度量识别时序基因网络","authors":"A. Agrawal, A. Mittal","doi":"10.1109/ICISIP.2005.1619417","DOIUrl":null,"url":null,"abstract":"A gene network refers to the knowledge of the activators and inhibitors of all genes. The genes themselves are believed to function as regulators of other genes. Most work done so far either ignores time delay in gene regulation or assumes that it is constant. We here propose the use of signal processing metrics like correlation techniques to find the gene interactions. Also, a post-processing stage is developed to remove false interactions among genes due to common parents, and dynamic correlation thresholds are used for selecting suitable correlation coefficients for constructing the gene network. The proposed correlation based network learning algorithm (CBNL Algorithm) considers the multi time delay relationships among the genes, and therefore estimates the temporal gene network. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae expression data and comparison with other methods indicate the effectiveness of the method","PeriodicalId":261916,"journal":{"name":"2005 3rd International Conference on Intelligent Sensing and Information Processing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Identifying Temporal Gene Networks Using Signal Processing Metrics on Time-Series Gene Expression Data\",\"authors\":\"A. Agrawal, A. Mittal\",\"doi\":\"10.1109/ICISIP.2005.1619417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A gene network refers to the knowledge of the activators and inhibitors of all genes. The genes themselves are believed to function as regulators of other genes. Most work done so far either ignores time delay in gene regulation or assumes that it is constant. We here propose the use of signal processing metrics like correlation techniques to find the gene interactions. Also, a post-processing stage is developed to remove false interactions among genes due to common parents, and dynamic correlation thresholds are used for selecting suitable correlation coefficients for constructing the gene network. The proposed correlation based network learning algorithm (CBNL Algorithm) considers the multi time delay relationships among the genes, and therefore estimates the temporal gene network. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae expression data and comparison with other methods indicate the effectiveness of the method\",\"PeriodicalId\":261916,\"journal\":{\"name\":\"2005 3rd International Conference on Intelligent Sensing and Information Processing\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 3rd International Conference on Intelligent Sensing and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIP.2005.1619417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 3rd International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2005.1619417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基因网络是指所有基因的激活因子和抑制因子的知识。这些基因本身被认为是其他基因的调节者。到目前为止,大多数研究要么忽略了基因调控的时间延迟,要么假设它是恒定的。我们在此建议使用信号处理指标,如相关技术来发现基因相互作用。此外,还开发了一个后处理阶段,以消除基因之间由于共同亲本而产生的虚假相互作用,并使用动态相关阈值选择合适的相关系数来构建基因网络。提出的基于相关性的网络学习算法(CBNL算法)考虑了基因之间的多时延关系,从而估计了时间基因网络。在MATLAB中对该方法进行了实现,并对酿酒酵母的表达数据进行了实验,并与其他方法进行了比较,结果表明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying Temporal Gene Networks Using Signal Processing Metrics on Time-Series Gene Expression Data
A gene network refers to the knowledge of the activators and inhibitors of all genes. The genes themselves are believed to function as regulators of other genes. Most work done so far either ignores time delay in gene regulation or assumes that it is constant. We here propose the use of signal processing metrics like correlation techniques to find the gene interactions. Also, a post-processing stage is developed to remove false interactions among genes due to common parents, and dynamic correlation thresholds are used for selecting suitable correlation coefficients for constructing the gene network. The proposed correlation based network learning algorithm (CBNL Algorithm) considers the multi time delay relationships among the genes, and therefore estimates the temporal gene network. The implementation of our method is done in MATLAB and experimental results on Saccharomyces cerevisiae expression data and comparison with other methods indicate the effectiveness of the method
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信