填补空白:改进维基百科存根

Siddhartha Banerjee, P. Mitra
{"title":"填补空白:改进维基百科存根","authors":"Siddhartha Banerjee, P. Mitra","doi":"10.1145/2682571.2797073","DOIUrl":null,"url":null,"abstract":"The availability of only a limited number of contributors on Wikipedia cannot ensure consistent growth and improvement of the online encyclopedia. With information being scattered on the web, our goal is to automate the process of generation of content for Wikipedia. In this work, we propose a technique of improving stubs on Wikipedia that do not contain comprehensive information. A classifier learns features from the existing comprehensive articles on Wikipedia and recommends content that can be added to the stubs to improve the completeness of such stubs. We conduct experiments using several classifiers - Latent Dirichlet Allocation (LDA) based model, a deep learning based architecture (Deep belief network) and TFIDF based classifier. Our experiments reveal that the LDA based model outperforms the other models (~6% F-score). Our generation approach shows that this technique is capable of generating comprehensive articles. ROUGE-2 scores of the articles generated by our system outperform the articles generated using the baseline. Content generated by our system has been appended to several stubs and successfully retained in Wikipedia.","PeriodicalId":106339,"journal":{"name":"Proceedings of the 2015 ACM Symposium on Document Engineering","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Filling the Gaps: Improving Wikipedia Stubs\",\"authors\":\"Siddhartha Banerjee, P. Mitra\",\"doi\":\"10.1145/2682571.2797073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of only a limited number of contributors on Wikipedia cannot ensure consistent growth and improvement of the online encyclopedia. With information being scattered on the web, our goal is to automate the process of generation of content for Wikipedia. In this work, we propose a technique of improving stubs on Wikipedia that do not contain comprehensive information. A classifier learns features from the existing comprehensive articles on Wikipedia and recommends content that can be added to the stubs to improve the completeness of such stubs. We conduct experiments using several classifiers - Latent Dirichlet Allocation (LDA) based model, a deep learning based architecture (Deep belief network) and TFIDF based classifier. Our experiments reveal that the LDA based model outperforms the other models (~6% F-score). Our generation approach shows that this technique is capable of generating comprehensive articles. ROUGE-2 scores of the articles generated by our system outperform the articles generated using the baseline. Content generated by our system has been appended to several stubs and successfully retained in Wikipedia.\",\"PeriodicalId\":106339,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Symposium on Document Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2682571.2797073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Symposium on Document Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2682571.2797073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在维基百科上,只有有限数量的贡献者的可用性不能确保在线百科全书的持续增长和改进。随着信息在网络上的分散,我们的目标是使维基百科生成内容的过程自动化。在这项工作中,我们提出了一种改进维基百科上不包含全面信息的存根的技术。分类器从Wikipedia上现有的综合文章中学习特征,并推荐可以添加到存根中的内容,以提高存根的完整性。我们使用几种分类器进行了实验-基于潜狄利克雷分配(LDA)的模型,基于深度学习的架构(deep belief network)和基于TFIDF的分类器。我们的实验表明,基于LDA的模型优于其他模型(~6%的f值)。我们的生成方法表明,这种技术能够生成全面的文章。我们的系统生成的文章的ROUGE-2分数优于使用基线生成的文章。我们的系统生成的内容已经被添加到几个存根中,并成功地保留在维基百科中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filling the Gaps: Improving Wikipedia Stubs
The availability of only a limited number of contributors on Wikipedia cannot ensure consistent growth and improvement of the online encyclopedia. With information being scattered on the web, our goal is to automate the process of generation of content for Wikipedia. In this work, we propose a technique of improving stubs on Wikipedia that do not contain comprehensive information. A classifier learns features from the existing comprehensive articles on Wikipedia and recommends content that can be added to the stubs to improve the completeness of such stubs. We conduct experiments using several classifiers - Latent Dirichlet Allocation (LDA) based model, a deep learning based architecture (Deep belief network) and TFIDF based classifier. Our experiments reveal that the LDA based model outperforms the other models (~6% F-score). Our generation approach shows that this technique is capable of generating comprehensive articles. ROUGE-2 scores of the articles generated by our system outperform the articles generated using the baseline. Content generated by our system has been appended to several stubs and successfully retained in Wikipedia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信