Rui Xu, M. Bai, K. Shu, Yilong Liang, Yun-ping Zhu, Cheng Chang
{"title":"基于深度学习的质谱数据蛋白质鉴定算法优化","authors":"Rui Xu, M. Bai, K. Shu, Yilong Liang, Yun-ping Zhu, Cheng Chang","doi":"10.1109/AEMCSE50948.2020.00110","DOIUrl":null,"url":null,"abstract":"Protein sequence database search is one of the most commonly used methods for protein identification in shotgun proteomics. In tradition, searching a protein sequence database is usually required to construct the theoretical spectrum for each peptide at first, which only considers the information of mass-to-charge ratio at present. However, the information related to isotope peak intensity is neglected. Thanks to the rapid development of artificial intelligence technique in recent years, deep learning-based MS/MS spectrum prediction tools have showed a high accuracy and great potentials to improve the sensitivity and accuracy of protein sequence database searching. In this study, we used a deep learning model (pDeep2) to predict the theoretical mass spectrum of all peptides and applied it to a database searching tool (DeepNovo), thus improving the sensitivity and accuracy of peptide identification.","PeriodicalId":246841,"journal":{"name":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Protein Identification Algorithm Optimization for Mass Spectrometry Data using Deep Learning\",\"authors\":\"Rui Xu, M. Bai, K. Shu, Yilong Liang, Yun-ping Zhu, Cheng Chang\",\"doi\":\"10.1109/AEMCSE50948.2020.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein sequence database search is one of the most commonly used methods for protein identification in shotgun proteomics. In tradition, searching a protein sequence database is usually required to construct the theoretical spectrum for each peptide at first, which only considers the information of mass-to-charge ratio at present. However, the information related to isotope peak intensity is neglected. Thanks to the rapid development of artificial intelligence technique in recent years, deep learning-based MS/MS spectrum prediction tools have showed a high accuracy and great potentials to improve the sensitivity and accuracy of protein sequence database searching. In this study, we used a deep learning model (pDeep2) to predict the theoretical mass spectrum of all peptides and applied it to a database searching tool (DeepNovo), thus improving the sensitivity and accuracy of peptide identification.\",\"PeriodicalId\":246841,\"journal\":{\"name\":\"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEMCSE50948.2020.00110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEMCSE50948.2020.00110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Protein Identification Algorithm Optimization for Mass Spectrometry Data using Deep Learning
Protein sequence database search is one of the most commonly used methods for protein identification in shotgun proteomics. In tradition, searching a protein sequence database is usually required to construct the theoretical spectrum for each peptide at first, which only considers the information of mass-to-charge ratio at present. However, the information related to isotope peak intensity is neglected. Thanks to the rapid development of artificial intelligence technique in recent years, deep learning-based MS/MS spectrum prediction tools have showed a high accuracy and great potentials to improve the sensitivity and accuracy of protein sequence database searching. In this study, we used a deep learning model (pDeep2) to predict the theoretical mass spectrum of all peptides and applied it to a database searching tool (DeepNovo), thus improving the sensitivity and accuracy of peptide identification.