T. Mizutani, K. Takeuchi, T. Saraya, M. Kobayashi, T. Hiramoto
{"title":"极值理论在SRAM数据保留电压最坏情况统计分析中的应用","authors":"T. Mizutani, K. Takeuchi, T. Saraya, M. Kobayashi, T. Hiramoto","doi":"10.23919/SNW.2019.8782900","DOIUrl":null,"url":null,"abstract":"Extreme value theory was applied to the estimation of worst case SRAM data retention voltage (DRV). It was found that the worst case DRV follows Gumbel distributions, and can be estimated by measuring not all, but only the worst case DRV of several SRAM arrays.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Extreme Value Theory to Statistical Analyses of Worst Case SRAM Data Retention Voltage\",\"authors\":\"T. Mizutani, K. Takeuchi, T. Saraya, M. Kobayashi, T. Hiramoto\",\"doi\":\"10.23919/SNW.2019.8782900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme value theory was applied to the estimation of worst case SRAM data retention voltage (DRV). It was found that the worst case DRV follows Gumbel distributions, and can be estimated by measuring not all, but only the worst case DRV of several SRAM arrays.\",\"PeriodicalId\":170513,\"journal\":{\"name\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Silicon Nanoelectronics Workshop (SNW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SNW.2019.8782900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Extreme Value Theory to Statistical Analyses of Worst Case SRAM Data Retention Voltage
Extreme value theory was applied to the estimation of worst case SRAM data retention voltage (DRV). It was found that the worst case DRV follows Gumbel distributions, and can be estimated by measuring not all, but only the worst case DRV of several SRAM arrays.