Bernhard Lippmann, J. Hatsch, Stefan Seidl, Detlef Houdeau, Niranjana Papagudi Subrahmanyam, Daniel Schneider, Malek Safieh, Anne Passarelli, Aliza Maftun, M. Brunner, Tim Music, Michael Pehl, T. Siddiqui, R. Brederlow, Ulf Schlichtmann, Bjoern Driemeyer, M. Ortmanns, Robert Hesselbarth, Matthias Hiller
{"title":"VE-FIDES:利用创新的指纹识别技术设计可信赖的供应链","authors":"Bernhard Lippmann, J. Hatsch, Stefan Seidl, Detlef Houdeau, Niranjana Papagudi Subrahmanyam, Daniel Schneider, Malek Safieh, Anne Passarelli, Aliza Maftun, M. Brunner, Tim Music, Michael Pehl, T. Siddiqui, R. Brederlow, Ulf Schlichtmann, Bjoern Driemeyer, M. Ortmanns, Robert Hesselbarth, Matthias Hiller","doi":"10.23919/DATE56975.2023.10137026","DOIUrl":null,"url":null,"abstract":"The project VE-FIDES will contribute with a solution based on an innovative multi-level fingerprinting approach to secure electronics supply chains against the threats of malicious modification, piracy, and counterfeiting. Hardware-fingerprints are derived from minuscule, unavoidable process variations using the technology of Physical Unclonable Functions (PUFs). The derived fingerprints are processed to a system fingerprint enabling unique identification, not only of single components but also on PCB level. With the proposed concept, we show how the system fingerprint can enhance the trustworthiness of the overall system. For this purpose, the complete system including tiny sensors, a Secure Element and its interface to the application is considered in VE-FIDES. New insights into methodologies to derive component and system fingerprints are gained. These techniques for the verification of system integrity are complemented by methods for preventing reverse engineering. Two application scenarios are in the focus of VE-FIDES: Industrial control systems and an automotive use case are considered, giving insights to a wide spectrum of requirements for products built from components provided by international supply chains.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"VE-FIDES: Designing Trustworthy Supply Chains Using Innovative Fingerprinting Implementations\",\"authors\":\"Bernhard Lippmann, J. Hatsch, Stefan Seidl, Detlef Houdeau, Niranjana Papagudi Subrahmanyam, Daniel Schneider, Malek Safieh, Anne Passarelli, Aliza Maftun, M. Brunner, Tim Music, Michael Pehl, T. Siddiqui, R. Brederlow, Ulf Schlichtmann, Bjoern Driemeyer, M. Ortmanns, Robert Hesselbarth, Matthias Hiller\",\"doi\":\"10.23919/DATE56975.2023.10137026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The project VE-FIDES will contribute with a solution based on an innovative multi-level fingerprinting approach to secure electronics supply chains against the threats of malicious modification, piracy, and counterfeiting. Hardware-fingerprints are derived from minuscule, unavoidable process variations using the technology of Physical Unclonable Functions (PUFs). The derived fingerprints are processed to a system fingerprint enabling unique identification, not only of single components but also on PCB level. With the proposed concept, we show how the system fingerprint can enhance the trustworthiness of the overall system. For this purpose, the complete system including tiny sensors, a Secure Element and its interface to the application is considered in VE-FIDES. New insights into methodologies to derive component and system fingerprints are gained. These techniques for the verification of system integrity are complemented by methods for preventing reverse engineering. Two application scenarios are in the focus of VE-FIDES: Industrial control systems and an automotive use case are considered, giving insights to a wide spectrum of requirements for products built from components provided by international supply chains.\",\"PeriodicalId\":340349,\"journal\":{\"name\":\"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/DATE56975.2023.10137026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
VE-FIDES: Designing Trustworthy Supply Chains Using Innovative Fingerprinting Implementations
The project VE-FIDES will contribute with a solution based on an innovative multi-level fingerprinting approach to secure electronics supply chains against the threats of malicious modification, piracy, and counterfeiting. Hardware-fingerprints are derived from minuscule, unavoidable process variations using the technology of Physical Unclonable Functions (PUFs). The derived fingerprints are processed to a system fingerprint enabling unique identification, not only of single components but also on PCB level. With the proposed concept, we show how the system fingerprint can enhance the trustworthiness of the overall system. For this purpose, the complete system including tiny sensors, a Secure Element and its interface to the application is considered in VE-FIDES. New insights into methodologies to derive component and system fingerprints are gained. These techniques for the verification of system integrity are complemented by methods for preventing reverse engineering. Two application scenarios are in the focus of VE-FIDES: Industrial control systems and an automotive use case are considered, giving insights to a wide spectrum of requirements for products built from components provided by international supply chains.