软件定义网络中基于gnn的端到端时延预测

Zhun Ge, Jiacheng Hou, A. Nayak
{"title":"软件定义网络中基于gnn的端到端时延预测","authors":"Zhun Ge, Jiacheng Hou, A. Nayak","doi":"10.1109/DCOSS54816.2022.00066","DOIUrl":null,"url":null,"abstract":"In software-defined networking (SDN), predicting latency (delay) is essential for enhancing performance, power consumption and resource utilization in meeting its significant latency requirements. In this paper, we present a graph-based formulation of Abilene Network and apply a Graph Neural Network (GNN)-based model, Spatial-Temporal Graph Convolutional Network (STGCN), to predict end-to-end packet delay on this formulation. We find this model outperforms the average baseline predictor in predicting packet delay since the STGCN framework captures both spatial and temporal dimensions of the data. We also compare STGCN with other machine learning methods: Random Forest (RF) and Neural Network (NN). In the most complex network traffic condition with high traffic intensity, varying capacities and propagation delay, STGCN is 68.5% and 78.7% better than RF and NN, respectively. This illustrates the feasibility and benefits of a GNN approach in predicting end-to-end delay in software-defined networks.","PeriodicalId":300416,"journal":{"name":"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GNN-based End-to-end Delay Prediction in Software Defined Networking\",\"authors\":\"Zhun Ge, Jiacheng Hou, A. Nayak\",\"doi\":\"10.1109/DCOSS54816.2022.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In software-defined networking (SDN), predicting latency (delay) is essential for enhancing performance, power consumption and resource utilization in meeting its significant latency requirements. In this paper, we present a graph-based formulation of Abilene Network and apply a Graph Neural Network (GNN)-based model, Spatial-Temporal Graph Convolutional Network (STGCN), to predict end-to-end packet delay on this formulation. We find this model outperforms the average baseline predictor in predicting packet delay since the STGCN framework captures both spatial and temporal dimensions of the data. We also compare STGCN with other machine learning methods: Random Forest (RF) and Neural Network (NN). In the most complex network traffic condition with high traffic intensity, varying capacities and propagation delay, STGCN is 68.5% and 78.7% better than RF and NN, respectively. This illustrates the feasibility and benefits of a GNN approach in predicting end-to-end delay in software-defined networks.\",\"PeriodicalId\":300416,\"journal\":{\"name\":\"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCOSS54816.2022.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS54816.2022.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在软件定义网络(SDN)中,预测延迟(delay)对于提高性能、功耗和资源利用率至关重要,以满足其对延迟的巨大需求。在本文中,我们提出了一种基于图的Abilene网络公式,并应用基于图神经网络(GNN)的模型,时空图卷积网络(STGCN)来预测该公式的端到端数据包延迟。我们发现该模型在预测数据包延迟方面优于平均基线预测器,因为STGCN框架捕获了数据的空间和时间维度。我们还比较了STGCN与其他机器学习方法:随机森林(RF)和神经网络(NN)。在高流量强度、变容量、传播时延等最复杂的网络流量条件下,STGCN分别比RF和NN的性能好68.5%和78.7%。这说明了GNN方法在预测软件定义网络的端到端延迟方面的可行性和好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GNN-based End-to-end Delay Prediction in Software Defined Networking
In software-defined networking (SDN), predicting latency (delay) is essential for enhancing performance, power consumption and resource utilization in meeting its significant latency requirements. In this paper, we present a graph-based formulation of Abilene Network and apply a Graph Neural Network (GNN)-based model, Spatial-Temporal Graph Convolutional Network (STGCN), to predict end-to-end packet delay on this formulation. We find this model outperforms the average baseline predictor in predicting packet delay since the STGCN framework captures both spatial and temporal dimensions of the data. We also compare STGCN with other machine learning methods: Random Forest (RF) and Neural Network (NN). In the most complex network traffic condition with high traffic intensity, varying capacities and propagation delay, STGCN is 68.5% and 78.7% better than RF and NN, respectively. This illustrates the feasibility and benefits of a GNN approach in predicting end-to-end delay in software-defined networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信