无界程序内存增加了一阶动态逻辑的表现力

J. Tiuryn
{"title":"无界程序内存增加了一阶动态逻辑的表现力","authors":"J. Tiuryn","doi":"10.1109/SFCS.1981.54","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to-compare various logics of programs with respect to their expressibility. The main result of the paper states that no logic of bounded memory programs is capable of defining the algebra of standard binary trees T = (T, CONS, NIL). Since the usual logics of unbounded memory programs are able to define the above algebra - we derive from the main result a couple of results which solve some questions about comparing expressive powers of programming logics.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Unbounded program memory adds to the expressive power of first-order dynamic logic\",\"authors\":\"J. Tiuryn\",\"doi\":\"10.1109/SFCS.1981.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to-compare various logics of programs with respect to their expressibility. The main result of the paper states that no logic of bounded memory programs is capable of defining the algebra of standard binary trees T = (T, CONS, NIL). Since the usual logics of unbounded memory programs are able to define the above algebra - we derive from the main result a couple of results which solve some questions about comparing expressive powers of programming logics.\",\"PeriodicalId\":224735,\"journal\":{\"name\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1981-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1981.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1981.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文的目的是比较程序的各种逻辑的可表达性。本文的主要结果表明,有限内存程序的逻辑不能定义标准二叉树的代数T = (T, CONS, NIL)。由于无界内存程序的通常逻辑能够定义上述代数-我们从主要结果中推导出几个结果,这些结果解决了一些关于比较编程逻辑的表达能力的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbounded program memory adds to the expressive power of first-order dynamic logic
The aim of this paper is to-compare various logics of programs with respect to their expressibility. The main result of the paper states that no logic of bounded memory programs is capable of defining the algebra of standard binary trees T = (T, CONS, NIL). Since the usual logics of unbounded memory programs are able to define the above algebra - we derive from the main result a couple of results which solve some questions about comparing expressive powers of programming logics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信