自适应局部余弦变换用于地震图像压缩

A. P., Sumam David
{"title":"自适应局部余弦变换用于地震图像压缩","authors":"A. P., Sumam David","doi":"10.1109/ADCOM.2006.4289894","DOIUrl":null,"url":null,"abstract":"A typical seismic analysis involves collection of data by an array of seismometers, transmission over a narrow-band channel, and storage of data for analysis. Transmission and archiving of large volumes of data involves great cost. Hence there is a need to devise suitable methods for compressing the seismic data without compromising on the quality of the reconstructed signal. This paper presents our work on the seismic data compression based on adaptive local cosine transform and its associated multi-resolution and best-basis methodology and compares the results with wavelet based implementation.","PeriodicalId":296627,"journal":{"name":"2006 International Conference on Advanced Computing and Communications","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Adaptive Local Cosine transform for Seismic Image Compression\",\"authors\":\"A. P., Sumam David\",\"doi\":\"10.1109/ADCOM.2006.4289894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A typical seismic analysis involves collection of data by an array of seismometers, transmission over a narrow-band channel, and storage of data for analysis. Transmission and archiving of large volumes of data involves great cost. Hence there is a need to devise suitable methods for compressing the seismic data without compromising on the quality of the reconstructed signal. This paper presents our work on the seismic data compression based on adaptive local cosine transform and its associated multi-resolution and best-basis methodology and compares the results with wavelet based implementation.\",\"PeriodicalId\":296627,\"journal\":{\"name\":\"2006 International Conference on Advanced Computing and Communications\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Advanced Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADCOM.2006.4289894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Advanced Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADCOM.2006.4289894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

典型的地震分析包括通过一系列地震仪收集数据,在窄带信道上传输数据,以及为分析而存储数据。大量数据的传输和归档成本很高。因此,有必要设计合适的方法来压缩地震数据而不影响重建信号的质量。本文介绍了基于自适应局部余弦变换的地震数据压缩及其相关的多分辨率和最佳基方法,并将结果与基于小波变换的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Local Cosine transform for Seismic Image Compression
A typical seismic analysis involves collection of data by an array of seismometers, transmission over a narrow-band channel, and storage of data for analysis. Transmission and archiving of large volumes of data involves great cost. Hence there is a need to devise suitable methods for compressing the seismic data without compromising on the quality of the reconstructed signal. This paper presents our work on the seismic data compression based on adaptive local cosine transform and its associated multi-resolution and best-basis methodology and compares the results with wavelet based implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信