{"title":"基于非凸nltv正则化SAR图像特征增强和水体信息提取的QILU-1 SAR数据","authors":"Zhongqiu Xu, Mingzhi Wang, Bingchen Zhang, Yirong Wu, Suihua Liu, Ou Ruan","doi":"10.1109/IGARSS46834.2022.9883891","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) images have been widely used in water body information extraction. However, SAR images suffer from speckles and the additive noise, which affect the performance of automatic information extraction. Thus, we propose the nonconvex-nonlocal total variation (NLTV) regularization to suppress speckles and the additive noise, and improve the performance of water body information extraction using the enhanced images. Experiments using Qilu-1 (QL-1) SAR data verify the effectiveness of the method.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonconvex-NLTV Regularization-Based SAR Image Feature Enhancement with Water Body Information Extraction Using QILU-1 SAR Data\",\"authors\":\"Zhongqiu Xu, Mingzhi Wang, Bingchen Zhang, Yirong Wu, Suihua Liu, Ou Ruan\",\"doi\":\"10.1109/IGARSS46834.2022.9883891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) images have been widely used in water body information extraction. However, SAR images suffer from speckles and the additive noise, which affect the performance of automatic information extraction. Thus, we propose the nonconvex-nonlocal total variation (NLTV) regularization to suppress speckles and the additive noise, and improve the performance of water body information extraction using the enhanced images. Experiments using Qilu-1 (QL-1) SAR data verify the effectiveness of the method.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9883891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonconvex-NLTV Regularization-Based SAR Image Feature Enhancement with Water Body Information Extraction Using QILU-1 SAR Data
Synthetic aperture radar (SAR) images have been widely used in water body information extraction. However, SAR images suffer from speckles and the additive noise, which affect the performance of automatic information extraction. Thus, we propose the nonconvex-nonlocal total variation (NLTV) regularization to suppress speckles and the additive noise, and improve the performance of water body information extraction using the enhanced images. Experiments using Qilu-1 (QL-1) SAR data verify the effectiveness of the method.