基于非凸nltv正则化SAR图像特征增强和水体信息提取的QILU-1 SAR数据

Zhongqiu Xu, Mingzhi Wang, Bingchen Zhang, Yirong Wu, Suihua Liu, Ou Ruan
{"title":"基于非凸nltv正则化SAR图像特征增强和水体信息提取的QILU-1 SAR数据","authors":"Zhongqiu Xu, Mingzhi Wang, Bingchen Zhang, Yirong Wu, Suihua Liu, Ou Ruan","doi":"10.1109/IGARSS46834.2022.9883891","DOIUrl":null,"url":null,"abstract":"Synthetic aperture radar (SAR) images have been widely used in water body information extraction. However, SAR images suffer from speckles and the additive noise, which affect the performance of automatic information extraction. Thus, we propose the nonconvex-nonlocal total variation (NLTV) regularization to suppress speckles and the additive noise, and improve the performance of water body information extraction using the enhanced images. Experiments using Qilu-1 (QL-1) SAR data verify the effectiveness of the method.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nonconvex-NLTV Regularization-Based SAR Image Feature Enhancement with Water Body Information Extraction Using QILU-1 SAR Data\",\"authors\":\"Zhongqiu Xu, Mingzhi Wang, Bingchen Zhang, Yirong Wu, Suihua Liu, Ou Ruan\",\"doi\":\"10.1109/IGARSS46834.2022.9883891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic aperture radar (SAR) images have been widely used in water body information extraction. However, SAR images suffer from speckles and the additive noise, which affect the performance of automatic information extraction. Thus, we propose the nonconvex-nonlocal total variation (NLTV) regularization to suppress speckles and the additive noise, and improve the performance of water body information extraction using the enhanced images. Experiments using Qilu-1 (QL-1) SAR data verify the effectiveness of the method.\",\"PeriodicalId\":426003,\"journal\":{\"name\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS46834.2022.9883891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

合成孔径雷达(SAR)图像在水体信息提取中有着广泛的应用。然而,SAR图像存在斑点和加性噪声,影响了自动信息提取的性能。为此,我们提出了非凸非局部全变分(NLTV)正则化方法来抑制斑点和加性噪声,提高增强图像的水体信息提取性能。利用齐鲁一号(QL-1) SAR数据进行的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonconvex-NLTV Regularization-Based SAR Image Feature Enhancement with Water Body Information Extraction Using QILU-1 SAR Data
Synthetic aperture radar (SAR) images have been widely used in water body information extraction. However, SAR images suffer from speckles and the additive noise, which affect the performance of automatic information extraction. Thus, we propose the nonconvex-nonlocal total variation (NLTV) regularization to suppress speckles and the additive noise, and improve the performance of water body information extraction using the enhanced images. Experiments using Qilu-1 (QL-1) SAR data verify the effectiveness of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信