导航信息处理中的保证估计问题

V. A. Tupysev, O. Stepanov, A. Loparev, Y. Litvinenko
{"title":"导航信息处理中的保证估计问题","authors":"V. A. Tupysev, O. Stepanov, A. Loparev, Y. Litvinenko","doi":"10.1109/CCA.2009.5281081","DOIUrl":null,"url":null,"abstract":"A new approach for guaranteed state estimation of a linear system under parameter uncertainties in correlated disturbances and measurement errors is suggested. Conditions for adjustment of a Kalman-type filter with guaranteed estimation are derived for the case that the correlated disturbances and measurement errors are first-order Markov processes. The efficiency of the suggested method is illustrated by a navigation problem solved for aiding the inertial navigation system.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Guaranteed estimation in the problems of navigation information processing\",\"authors\":\"V. A. Tupysev, O. Stepanov, A. Loparev, Y. Litvinenko\",\"doi\":\"10.1109/CCA.2009.5281081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach for guaranteed state estimation of a linear system under parameter uncertainties in correlated disturbances and measurement errors is suggested. Conditions for adjustment of a Kalman-type filter with guaranteed estimation are derived for the case that the correlated disturbances and measurement errors are first-order Markov processes. The efficiency of the suggested method is illustrated by a navigation problem solved for aiding the inertial navigation system.\",\"PeriodicalId\":294950,\"journal\":{\"name\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2009.5281081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5281081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

提出了在相关扰动和测量误差下参数不确定线性系统保态估计的一种新方法。在相关扰动和测量误差为一阶马尔可夫过程的情况下,导出了保证估计卡尔曼滤波器的平差条件。通过一个辅助惯导系统的导航问题说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Guaranteed estimation in the problems of navigation information processing
A new approach for guaranteed state estimation of a linear system under parameter uncertainties in correlated disturbances and measurement errors is suggested. Conditions for adjustment of a Kalman-type filter with guaranteed estimation are derived for the case that the correlated disturbances and measurement errors are first-order Markov processes. The efficiency of the suggested method is illustrated by a navigation problem solved for aiding the inertial navigation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信