约当弧的交点图

Patrice Ossona de Mendez, H. D. Fraysseix
{"title":"约当弧的交点图","authors":"Patrice Ossona de Mendez, H. D. Fraysseix","doi":"10.1090/dimacs/049/02","DOIUrl":null,"url":null,"abstract":"A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.","PeriodicalId":144845,"journal":{"name":"Contemporary Trends in Discrete Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection graphs of Jordan arcs\",\"authors\":\"Patrice Ossona de Mendez, H. D. Fraysseix\",\"doi\":\"10.1090/dimacs/049/02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.\",\"PeriodicalId\":144845,\"journal\":{\"name\":\"Contemporary Trends in Discrete Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Trends in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/049/02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Trends in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/049/02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Jordan弧族,使得两条弧不相切,定义了一个超图,其顶点是弧,其边缘是交点。我们说这个超图有一个强相交表示,如果每个相交点都在至多一个弧的内部,我们就说这个超图有一个强接触表示。我们首先对具有强接触表示的超图进行了刻画,并推导了一个简单平面图具有强交表示的充分条件。然后,利用四色定理,证明了一类简单平面图具有强交表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intersection graphs of Jordan arcs
A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信