{"title":"约当弧的交点图","authors":"Patrice Ossona de Mendez, H. D. Fraysseix","doi":"10.1090/dimacs/049/02","DOIUrl":null,"url":null,"abstract":"A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.","PeriodicalId":144845,"journal":{"name":"Contemporary Trends in Discrete Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection graphs of Jordan arcs\",\"authors\":\"Patrice Ossona de Mendez, H. D. Fraysseix\",\"doi\":\"10.1090/dimacs/049/02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.\",\"PeriodicalId\":144845,\"journal\":{\"name\":\"Contemporary Trends in Discrete Mathematics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Trends in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/dimacs/049/02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Trends in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/049/02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.