内生菌共生:进化发展及其对植物农业的影响

X. Chang, Blair Young, Nicole Vaccaro, Raquele Strickland, W. Goldstein, L. Struwe, J. White
{"title":"内生菌共生:进化发展及其对植物农业的影响","authors":"X. Chang, Blair Young, Nicole Vaccaro, Raquele Strickland, W. Goldstein, L. Struwe, J. White","doi":"10.48130/gr-2023-0018","DOIUrl":null,"url":null,"abstract":"Land plants can absorb soil microbes (bacterial, fungal and algal) into their cells and tissues. Plant endophytes enhance plant growth, stimulate elongation of root hairs, increase branching of roots, allow plants access to more nutrients, and stimulate oxidative stress tolerance. In the rhizophagy cycle, microbes are absorbed from soil directly into plant root cells where nutrients are extracted oxidatively, which provides nutrients to support plant growth. Early land plants lacked true roots, but possessed non-photosynthetic filaments (e.g., caulonemata, rhizoids) that may have cultivated diazotrophic bacteria within their cells as a source of nitrogen, just as bryophyte and pteridophyte rhizoids do today. Extant land plant lineages, such as bryophytes, pteridophytes, gymnosperms, and flowering plants, often produce epidermal structures (e.g., trichomes, papillae, paraphyllia, scales) on their roots, leaves, stems, or thalli; these often contain symbiotic nitrogen-fixing bacteria. Little is understood about how plants interact with soil and plant microbiomes. In this article we present novel endophytic phenomena in diverse lineages of land plants (liverworts, ferns, monocots, and eudicots) and explain how such symbiotic systems might have evolved over hundreds of millions of years. Due to these endophytic and symbiotic systems, land plants have the capability to obtain nutrients from the environment. Cultivation practices used in commercial agriculture can detract from the innate capabilities of plants to use microbes as a source of nutrients and might be harmful to plant health.","PeriodicalId":197485,"journal":{"name":"Grass Research","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endophyte Symbiosis: Evolutionary Development, and Impacts of Plant Agriculture\",\"authors\":\"X. Chang, Blair Young, Nicole Vaccaro, Raquele Strickland, W. Goldstein, L. Struwe, J. White\",\"doi\":\"10.48130/gr-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land plants can absorb soil microbes (bacterial, fungal and algal) into their cells and tissues. Plant endophytes enhance plant growth, stimulate elongation of root hairs, increase branching of roots, allow plants access to more nutrients, and stimulate oxidative stress tolerance. In the rhizophagy cycle, microbes are absorbed from soil directly into plant root cells where nutrients are extracted oxidatively, which provides nutrients to support plant growth. Early land plants lacked true roots, but possessed non-photosynthetic filaments (e.g., caulonemata, rhizoids) that may have cultivated diazotrophic bacteria within their cells as a source of nitrogen, just as bryophyte and pteridophyte rhizoids do today. Extant land plant lineages, such as bryophytes, pteridophytes, gymnosperms, and flowering plants, often produce epidermal structures (e.g., trichomes, papillae, paraphyllia, scales) on their roots, leaves, stems, or thalli; these often contain symbiotic nitrogen-fixing bacteria. Little is understood about how plants interact with soil and plant microbiomes. In this article we present novel endophytic phenomena in diverse lineages of land plants (liverworts, ferns, monocots, and eudicots) and explain how such symbiotic systems might have evolved over hundreds of millions of years. Due to these endophytic and symbiotic systems, land plants have the capability to obtain nutrients from the environment. Cultivation practices used in commercial agriculture can detract from the innate capabilities of plants to use microbes as a source of nutrients and might be harmful to plant health.\",\"PeriodicalId\":197485,\"journal\":{\"name\":\"Grass Research\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Grass Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48130/gr-2023-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Grass Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48130/gr-2023-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endophyte Symbiosis: Evolutionary Development, and Impacts of Plant Agriculture
Land plants can absorb soil microbes (bacterial, fungal and algal) into their cells and tissues. Plant endophytes enhance plant growth, stimulate elongation of root hairs, increase branching of roots, allow plants access to more nutrients, and stimulate oxidative stress tolerance. In the rhizophagy cycle, microbes are absorbed from soil directly into plant root cells where nutrients are extracted oxidatively, which provides nutrients to support plant growth. Early land plants lacked true roots, but possessed non-photosynthetic filaments (e.g., caulonemata, rhizoids) that may have cultivated diazotrophic bacteria within their cells as a source of nitrogen, just as bryophyte and pteridophyte rhizoids do today. Extant land plant lineages, such as bryophytes, pteridophytes, gymnosperms, and flowering plants, often produce epidermal structures (e.g., trichomes, papillae, paraphyllia, scales) on their roots, leaves, stems, or thalli; these often contain symbiotic nitrogen-fixing bacteria. Little is understood about how plants interact with soil and plant microbiomes. In this article we present novel endophytic phenomena in diverse lineages of land plants (liverworts, ferns, monocots, and eudicots) and explain how such symbiotic systems might have evolved over hundreds of millions of years. Due to these endophytic and symbiotic systems, land plants have the capability to obtain nutrients from the environment. Cultivation practices used in commercial agriculture can detract from the innate capabilities of plants to use microbes as a source of nutrients and might be harmful to plant health.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信