Jacob A. Kunz, Siwei Cheng, Y. Duan, J. Mayor, R. Harley, T. Habetler
{"title":"微加工用750,000转/分开关磁阻电机的设计","authors":"Jacob A. Kunz, Siwei Cheng, Y. Duan, J. Mayor, R. Harley, T. Habetler","doi":"10.1109/ECCE.2010.5617801","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed design process of an ultra-high speed, switched reluctance machine for micro machining. The performance goal of the machine is to reach a maximum rotation speed of 750,000 rpm with an output power of 100 W. The design of the rotor involves reducing aerodynamic drag, avoiding mechanical resonance, and mitigating excessive stress. The design of the stator focuses on meeting the torque requirement while minimizing core loss and copper loss. The performance of the machine and the strength of the rotor structure are both verified through finite-element simulations The final design is a 6/4 switched reluctance machine with a 6mm diameter rotor that is wrapped in a carbon fiber sleeve and exhibits 13.6 W of viscous loss. The stator has shoeless poles and exhibits 19.1 W of electromagnetic loss.","PeriodicalId":161915,"journal":{"name":"2010 IEEE Energy Conversion Congress and Exposition","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Design of a 750,000 rpm switched reluctance motor for micro machining\",\"authors\":\"Jacob A. Kunz, Siwei Cheng, Y. Duan, J. Mayor, R. Harley, T. Habetler\",\"doi\":\"10.1109/ECCE.2010.5617801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a detailed design process of an ultra-high speed, switched reluctance machine for micro machining. The performance goal of the machine is to reach a maximum rotation speed of 750,000 rpm with an output power of 100 W. The design of the rotor involves reducing aerodynamic drag, avoiding mechanical resonance, and mitigating excessive stress. The design of the stator focuses on meeting the torque requirement while minimizing core loss and copper loss. The performance of the machine and the strength of the rotor structure are both verified through finite-element simulations The final design is a 6/4 switched reluctance machine with a 6mm diameter rotor that is wrapped in a carbon fiber sleeve and exhibits 13.6 W of viscous loss. The stator has shoeless poles and exhibits 19.1 W of electromagnetic loss.\",\"PeriodicalId\":161915,\"journal\":{\"name\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Energy Conversion Congress and Exposition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2010.5617801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Energy Conversion Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2010.5617801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a 750,000 rpm switched reluctance motor for micro machining
This paper presents a detailed design process of an ultra-high speed, switched reluctance machine for micro machining. The performance goal of the machine is to reach a maximum rotation speed of 750,000 rpm with an output power of 100 W. The design of the rotor involves reducing aerodynamic drag, avoiding mechanical resonance, and mitigating excessive stress. The design of the stator focuses on meeting the torque requirement while minimizing core loss and copper loss. The performance of the machine and the strength of the rotor structure are both verified through finite-element simulations The final design is a 6/4 switched reluctance machine with a 6mm diameter rotor that is wrapped in a carbon fiber sleeve and exhibits 13.6 W of viscous loss. The stator has shoeless poles and exhibits 19.1 W of electromagnetic loss.