比较卷积神经网络在年轻人脸识别中的应用

Liangliang Wang, D. Rajan
{"title":"比较卷积神经网络在年轻人脸识别中的应用","authors":"Liangliang Wang, D. Rajan","doi":"10.1109/VCIP47243.2019.8966026","DOIUrl":null,"url":null,"abstract":"We consider the problem of determining whether a pair of face images can be distinguishable in terms of age and if so, which is the younger of the two. We also determine the degree of distinguishability in which age differences are categorized into large, medium, small and tiny. We propose a comparative convolutional neural network combining two parallel deep architectures. Based on the two deep learnt face features, we introduce a comparative layer to represent their mutual relationships, followed by a concatenatation implementation. Softmax is adopted to complete the classification task. To demonstrate our approach, we construct a very large dataset consisting of over 1.7 million face image pairs with young/old labels.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Convolutional Neural Network for Younger Face Identification\",\"authors\":\"Liangliang Wang, D. Rajan\",\"doi\":\"10.1109/VCIP47243.2019.8966026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of determining whether a pair of face images can be distinguishable in terms of age and if so, which is the younger of the two. We also determine the degree of distinguishability in which age differences are categorized into large, medium, small and tiny. We propose a comparative convolutional neural network combining two parallel deep architectures. Based on the two deep learnt face features, we introduce a comparative layer to represent their mutual relationships, followed by a concatenatation implementation. Softmax is adopted to complete the classification task. To demonstrate our approach, we construct a very large dataset consisting of over 1.7 million face image pairs with young/old labels.\",\"PeriodicalId\":388109,\"journal\":{\"name\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP47243.2019.8966026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8966026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是确定一对面部图像是否可以在年龄方面区分,如果是,哪个是两个中更年轻的。我们还确定了年龄差异分为大、中、小和微小的可区分程度。我们提出了一种结合两个并行深度架构的比较卷积神经网络。基于深度学习到的两个人脸特征,我们引入了一个比较层来表示它们之间的相互关系,然后进行了连接实现。采用Softmax完成分类任务。为了演示我们的方法,我们构建了一个非常大的数据集,由170多万对带有年轻/年老标签的人脸图像组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative Convolutional Neural Network for Younger Face Identification
We consider the problem of determining whether a pair of face images can be distinguishable in terms of age and if so, which is the younger of the two. We also determine the degree of distinguishability in which age differences are categorized into large, medium, small and tiny. We propose a comparative convolutional neural network combining two parallel deep architectures. Based on the two deep learnt face features, we introduce a comparative layer to represent their mutual relationships, followed by a concatenatation implementation. Softmax is adopted to complete the classification task. To demonstrate our approach, we construct a very large dataset consisting of over 1.7 million face image pairs with young/old labels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信