利用人类和海豚大脑中的光学和声纳图像进行图像分类

Sepehr Jalali, P. Seekings, Cheston Tan, Aiswarya Ratheesh, Joo-Hwee Lim, Elizabeth A. Taylor
{"title":"利用人类和海豚大脑中的光学和声纳图像进行图像分类","authors":"Sepehr Jalali, P. Seekings, Cheston Tan, Aiswarya Ratheesh, Joo-Hwee Lim, Elizabeth A. Taylor","doi":"10.1109/IJCNN.2013.6706892","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new biologically inspired model which simulates the visual pathways in the human brain used for classification of matching optical and sonar derived images. Marine mammals, such as dolphins, that live in waters with poor optical clarity and low light levels such as littoral zones, use a combination of optical vision and biosonar to navigate and hunt for prey. Given that dolphins have evolved a synergistic combination of optical visual input and acoustic/sonar input, the primary focus of this paper is on reaching a similar level of synergy for a diver or Autonomous Underwater Vehicle (AUV) platform equipped with a system to extend the range and resolution of vision in poor ambient visibility. We propose a biologically inspired model that combines and processes visual images acquired via optical and acoustic pathways and show that the combined model enhances the accuracy of automatic classification of target objects in underwater images.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of optical and sonar images in the human and dolphin brain for image classification\",\"authors\":\"Sepehr Jalali, P. Seekings, Cheston Tan, Aiswarya Ratheesh, Joo-Hwee Lim, Elizabeth A. Taylor\",\"doi\":\"10.1109/IJCNN.2013.6706892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new biologically inspired model which simulates the visual pathways in the human brain used for classification of matching optical and sonar derived images. Marine mammals, such as dolphins, that live in waters with poor optical clarity and low light levels such as littoral zones, use a combination of optical vision and biosonar to navigate and hunt for prey. Given that dolphins have evolved a synergistic combination of optical visual input and acoustic/sonar input, the primary focus of this paper is on reaching a similar level of synergy for a diver or Autonomous Underwater Vehicle (AUV) platform equipped with a system to extend the range and resolution of vision in poor ambient visibility. We propose a biologically inspired model that combines and processes visual images acquired via optical and acoustic pathways and show that the combined model enhances the accuracy of automatic classification of target objects in underwater images.\",\"PeriodicalId\":376975,\"journal\":{\"name\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2013.6706892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个新的生物学启发模型,该模型模拟了人脑中的视觉通路,用于匹配光学和声纳衍生图像的分类。海洋哺乳动物,如海豚,生活在光学清晰度差、光照水平低的水域,如沿海地区,它们使用光学视觉和生物声纳的组合来导航和捕食猎物。鉴于海豚已经进化出了光学视觉输入和声学/声纳输入的协同组合,本文的主要重点是为潜水员或自主水下航行器(AUV)平台达到类似的协同水平,该平台配备了一个系统,可以在低环境能见度下扩展视觉范围和分辨率。我们提出了一个生物学启发的模型,该模型结合并处理了通过光学和声学途径获得的视觉图像,并表明该组合模型提高了水下图像中目标物体的自动分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The use of optical and sonar images in the human and dolphin brain for image classification
In this paper we propose a new biologically inspired model which simulates the visual pathways in the human brain used for classification of matching optical and sonar derived images. Marine mammals, such as dolphins, that live in waters with poor optical clarity and low light levels such as littoral zones, use a combination of optical vision and biosonar to navigate and hunt for prey. Given that dolphins have evolved a synergistic combination of optical visual input and acoustic/sonar input, the primary focus of this paper is on reaching a similar level of synergy for a diver or Autonomous Underwater Vehicle (AUV) platform equipped with a system to extend the range and resolution of vision in poor ambient visibility. We propose a biologically inspired model that combines and processes visual images acquired via optical and acoustic pathways and show that the combined model enhances the accuracy of automatic classification of target objects in underwater images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信