一种基于神经网络的自适应模糊逻辑控制器

Huiwen Deng, Yi Wang
{"title":"一种基于神经网络的自适应模糊逻辑控制器","authors":"Huiwen Deng, Yi Wang","doi":"10.1109/ISADS.2005.1452096","DOIUrl":null,"url":null,"abstract":"Scaling factors tuning is one of the most used method to enhance the performance of a fuzzy logic controller (FLC). In this paper, we bring forward an adaptive FLC with self adjusting scaling factors (SFs) using neural networks (NNs). Definitions of SFs and their effects on the overall performance of an FLC are analyzed. Detailed control scheme, learning mechanism for the NNs and simulation results for typical second-order linear and nonlinear systems are showed.","PeriodicalId":120577,"journal":{"name":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An adaptive fuzzy logic controller with self-tuning scaling factors based on neural networks\",\"authors\":\"Huiwen Deng, Yi Wang\",\"doi\":\"10.1109/ISADS.2005.1452096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scaling factors tuning is one of the most used method to enhance the performance of a fuzzy logic controller (FLC). In this paper, we bring forward an adaptive FLC with self adjusting scaling factors (SFs) using neural networks (NNs). Definitions of SFs and their effects on the overall performance of an FLC are analyzed. Detailed control scheme, learning mechanism for the NNs and simulation results for typical second-order linear and nonlinear systems are showed.\",\"PeriodicalId\":120577,\"journal\":{\"name\":\"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISADS.2005.1452096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2005.1452096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

比例因子整定是提高模糊控制器(FLC)性能的常用方法之一。本文提出了一种基于神经网络的自适应FLC。分析了SFs的定义及其对FLC整体性能的影响。给出了神经网络的详细控制方案、学习机制以及典型二阶线性和非线性系统的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive fuzzy logic controller with self-tuning scaling factors based on neural networks
Scaling factors tuning is one of the most used method to enhance the performance of a fuzzy logic controller (FLC). In this paper, we bring forward an adaptive FLC with self adjusting scaling factors (SFs) using neural networks (NNs). Definitions of SFs and their effects on the overall performance of an FLC are analyzed. Detailed control scheme, learning mechanism for the NNs and simulation results for typical second-order linear and nonlinear systems are showed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信