Fuhu Song, Jifeng Hu, Che Wang, Jiao Huang, Haowen Zhang, Yi Wang
{"title":"基于序列特征增强的跨模态音频文本检索","authors":"Fuhu Song, Jifeng Hu, Che Wang, Jiao Huang, Haowen Zhang, Yi Wang","doi":"10.1145/3590003.3590056","DOIUrl":null,"url":null,"abstract":"The goal of cross-modal audio-text retrieval is to retrieve the target audio clips (textual descriptions), which should be relevant to a given textual (audial) query. It is a challenging task because it necessitates learning comprehensive feature representations for two different modalities and unifying them into a common embedding space. However, most existing cross-modal audio-text retrieval approaches do not explicitly learn the sequential representation in audio features. Moreover, their method of directly employing a fully connected neural network to transform the different modalities into a common space is detrimental to sequential features. In this paper, we introduce a sequential feature augmentation framework based on reinforcement learning and feature fusion to enhance the sequential feature for cross-modal features. First, we adopt reinforcement learning to explore effective sequential features in audial and textual features. Then, a recurrent fusion module is applied as a feature enhancement component to project heterogeneous features into a common space. Extensive experiments are conducted on two prevalent datasets: the AudioCaps and the Clotho. The results demonstrate that our method gains a significant improvement over previous state-of-the-art methods.","PeriodicalId":340225,"journal":{"name":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Modal Audio-Text Retrieval via Sequential Feature Augmentation\",\"authors\":\"Fuhu Song, Jifeng Hu, Che Wang, Jiao Huang, Haowen Zhang, Yi Wang\",\"doi\":\"10.1145/3590003.3590056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of cross-modal audio-text retrieval is to retrieve the target audio clips (textual descriptions), which should be relevant to a given textual (audial) query. It is a challenging task because it necessitates learning comprehensive feature representations for two different modalities and unifying them into a common embedding space. However, most existing cross-modal audio-text retrieval approaches do not explicitly learn the sequential representation in audio features. Moreover, their method of directly employing a fully connected neural network to transform the different modalities into a common space is detrimental to sequential features. In this paper, we introduce a sequential feature augmentation framework based on reinforcement learning and feature fusion to enhance the sequential feature for cross-modal features. First, we adopt reinforcement learning to explore effective sequential features in audial and textual features. Then, a recurrent fusion module is applied as a feature enhancement component to project heterogeneous features into a common space. Extensive experiments are conducted on two prevalent datasets: the AudioCaps and the Clotho. The results demonstrate that our method gains a significant improvement over previous state-of-the-art methods.\",\"PeriodicalId\":340225,\"journal\":{\"name\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3590003.3590056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 2nd Asia Conference on Algorithms, Computing and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3590003.3590056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Modal Audio-Text Retrieval via Sequential Feature Augmentation
The goal of cross-modal audio-text retrieval is to retrieve the target audio clips (textual descriptions), which should be relevant to a given textual (audial) query. It is a challenging task because it necessitates learning comprehensive feature representations for two different modalities and unifying them into a common embedding space. However, most existing cross-modal audio-text retrieval approaches do not explicitly learn the sequential representation in audio features. Moreover, their method of directly employing a fully connected neural network to transform the different modalities into a common space is detrimental to sequential features. In this paper, we introduce a sequential feature augmentation framework based on reinforcement learning and feature fusion to enhance the sequential feature for cross-modal features. First, we adopt reinforcement learning to explore effective sequential features in audial and textual features. Then, a recurrent fusion module is applied as a feature enhancement component to project heterogeneous features into a common space. Extensive experiments are conducted on two prevalent datasets: the AudioCaps and the Clotho. The results demonstrate that our method gains a significant improvement over previous state-of-the-art methods.