Intel微架构下WRF单矩6类微物理方案(WSM6)优化策略

T. Ouermi, A. Knoll, R. Kirby, M. Berzins
{"title":"Intel微架构下WRF单矩6类微物理方案(WSM6)优化策略","authors":"T. Ouermi, A. Knoll, R. Kirby, M. Berzins","doi":"10.1109/CANDAR.2017.58","DOIUrl":null,"url":null,"abstract":"Optimizations in the petascale era require modifications of existing codes to take advantage of new architectures with large core counts and SIMD vector units. This paper examines high-level and low-level optimization strategies for numerical weather prediction (NWP) codes. These strategies employ thread-local structures of arrays (SOA) and an OpenMP directive such as OMP SIMD. These optimization approaches are applied to the Weather Research Forecasting single-moment 6-class microphysics schemes (WSM6) in the US Navy NEPTUNE system. The results of this study indicate that the high-level approach with SOA and low-level OMP SIMD improves thread and vector parallelism by increasing data and temporal locality. The modified version of WSM6 runs 70x faster than the original serial code. This improvement is about 23.3x faster than the performance achieved by Ouermi et al. [1], and 14.9x faster than the performance achieved by Michalakes et al. [2].","PeriodicalId":157467,"journal":{"name":"2017 Fifth International Symposium on Computing and Networking (CANDAR)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization Strategies for WRF Single-Moment 6-Class Microphysics Scheme (WSM6) on Intel Microarchitectures\",\"authors\":\"T. Ouermi, A. Knoll, R. Kirby, M. Berzins\",\"doi\":\"10.1109/CANDAR.2017.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimizations in the petascale era require modifications of existing codes to take advantage of new architectures with large core counts and SIMD vector units. This paper examines high-level and low-level optimization strategies for numerical weather prediction (NWP) codes. These strategies employ thread-local structures of arrays (SOA) and an OpenMP directive such as OMP SIMD. These optimization approaches are applied to the Weather Research Forecasting single-moment 6-class microphysics schemes (WSM6) in the US Navy NEPTUNE system. The results of this study indicate that the high-level approach with SOA and low-level OMP SIMD improves thread and vector parallelism by increasing data and temporal locality. The modified version of WSM6 runs 70x faster than the original serial code. This improvement is about 23.3x faster than the performance achieved by Ouermi et al. [1], and 14.9x faster than the performance achieved by Michalakes et al. [2].\",\"PeriodicalId\":157467,\"journal\":{\"name\":\"2017 Fifth International Symposium on Computing and Networking (CANDAR)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Fifth International Symposium on Computing and Networking (CANDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CANDAR.2017.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifth International Symposium on Computing and Networking (CANDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDAR.2017.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

千兆级时代的优化需要修改现有代码,以利用具有大核数和SIMD矢量单元的新架构。本文研究了数值天气预报(NWP)代码的高级和低级优化策略。这些策略使用线程本地数组结构(SOA)和OpenMP指令,如OMP SIMD。将这些优化方法应用于美国海军海王星系统的天气研究预报单矩6级微物理方案(WSM6)。本研究的结果表明,SOA和低级OMP SIMD的高级方法通过增加数据和时间局部性来改善线程和向量并行性。修改版本的WSM6运行速度比原始串行代码快70倍。这一改进比Ouermi等人[1]的性能提高了约22.3倍,比Michalakes等人[2]的性能提高了14.9倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization Strategies for WRF Single-Moment 6-Class Microphysics Scheme (WSM6) on Intel Microarchitectures
Optimizations in the petascale era require modifications of existing codes to take advantage of new architectures with large core counts and SIMD vector units. This paper examines high-level and low-level optimization strategies for numerical weather prediction (NWP) codes. These strategies employ thread-local structures of arrays (SOA) and an OpenMP directive such as OMP SIMD. These optimization approaches are applied to the Weather Research Forecasting single-moment 6-class microphysics schemes (WSM6) in the US Navy NEPTUNE system. The results of this study indicate that the high-level approach with SOA and low-level OMP SIMD improves thread and vector parallelism by increasing data and temporal locality. The modified version of WSM6 runs 70x faster than the original serial code. This improvement is about 23.3x faster than the performance achieved by Ouermi et al. [1], and 14.9x faster than the performance achieved by Michalakes et al. [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信