Suwannee Phitakwinai, S. Auephanwiriyakul, N. Theera-Umpon
{"title":"基于布谷鸟搜索的多层感知器在洪水水位预测中的应用","authors":"Suwannee Phitakwinai, S. Auephanwiriyakul, N. Theera-Umpon","doi":"10.1109/IJCNN.2016.7727243","DOIUrl":null,"url":null,"abstract":"The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multilayer perceptron with Cuckoo search in water level prediction for flood forecasting\",\"authors\":\"Suwannee Phitakwinai, S. Auephanwiriyakul, N. Theera-Umpon\",\"doi\":\"10.1109/IJCNN.2016.7727243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilayer perceptron with Cuckoo search in water level prediction for flood forecasting
The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.