基于布谷鸟搜索的多层感知器在洪水水位预测中的应用

Suwannee Phitakwinai, S. Auephanwiriyakul, N. Theera-Umpon
{"title":"基于布谷鸟搜索的多层感知器在洪水水位预测中的应用","authors":"Suwannee Phitakwinai, S. Auephanwiriyakul, N. Theera-Umpon","doi":"10.1109/IJCNN.2016.7727243","DOIUrl":null,"url":null,"abstract":"The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multilayer perceptron with Cuckoo search in water level prediction for flood forecasting\",\"authors\":\"Suwannee Phitakwinai, S. Auephanwiriyakul, N. Theera-Umpon\",\"doi\":\"10.1109/IJCNN.2016.7727243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

采用布谷鸟搜索(CS)算法的前馈多层感知器(MLP) CS-MLP,对泰国清迈市区平河7小时前水位进行预测。将CS-MLP模型的预测性能与常规多层感知器(MLP)和前人的研究结果进行了比较。其中,CS-MLP在盲测数据集上的平均绝对误差为6.836 cm,是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilayer perceptron with Cuckoo search in water level prediction for flood forecasting
The feed forward multilayer perceptron (MLP) with the Cuckoo search (CS) algorithm, called CS-MLP is implemented to predict 7-hours-ahead water level of the Ping river at the downtown area of Chiang Mai, Thailand. The CS-MLP model prediction performance is compared with the regular multilayer perceptron (MLP) and the results from the previous work. The CS-MLP is the best among them with the mean absolute error on the blind test data set of 6.836 cm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信